
A01T622507.fm Page 1 Tuesday, March 21, 2006 4:02 PM

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2006 by Hitachi Consulting

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by
any means without the written permission of the publisher.

Library of Congress Control Number 2006921725

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 QWE 1 0 9 8 7 6

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further information
about international editions, contact your local Microsoft Corporation office or contact Microsoft Press Inter-
national directly at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send comments
to mspinput@microsoft.com.

Microsoft, Microsoft Press, ActiveX, Excel, Internet Explorer, MapPoint, MSDN, PivotTable, SharePoint, Vi-
sual Basic, Visual C#, Visual Studio, Windows, Windows NT, and Windows Server are either registered trade-
marks or trademarks of Microsoft Corporation in the United States and/or other countries. Other product and
company names mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain
name, e-mail address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided with-
out any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers,
or distributors will be held liable for any damages caused or alleged to be caused either directly or indirectly
by this book.

Acquisitions Editor: Ben Ryan
Project Editor: Denise Bankaitis
Technical Editor: Robert Hogan
Copy Editor: William Evan Gelder
Indexer: John Lewis

Body Part No. X11-82270

A02L622507.fm Page ii Wednesday, March 22, 2006 1:09 PM

iii

Table of Contents

Introduction . xiii

Finding Your Best Starting Point . xiii

About the Companion CD-ROM . xiv

System Requirements. xiv

Installing and Using the Sample Files . xv

Conventions and Features in This Book . xvii

Part I Getting Started with Reporting Services

1 Understanding Reporting. .3

Reporting Scenarios . 3

Reporting User Communities . 5

The Enterprise Reporting Life Cycle. 6

Authoring . 7

Management. 7

Access and Delivery . 8

Reporting Services Components . 8

Authoring Components. 9

Management Components. 11

Access and Delivery Components . 13

Chapter 1 Quick Reference . 16

2 Installing Reporting Services . 17

Considering Deployment Options . 17

Choosing a Reporting Services Edition. 17

Planning a Site Configuration . 18

Deciding Naming Conventions . 19

Preparing for Installation. 19

Reviewing Operating System Requirements . 19

Reviewing Software Requirements . 20

What do you think of this book?
We want to hear from you!

Microsoft is interested in hearing your feedback about this publication so we can
continually improve our books and learning resources for you. To participate in a brief
online survey, please visit: www.microsoft.com/learning/booksurvey/

6-2250-7.book Page iii Tuesday, March 21, 2006 3:45 PM

iv Table of Contents

Reviewing Configuration Prerequisites . 20

Creating Reporting Services Credentials . 21

Installing Reporting Services . 23

Launching Setup . 23

Choosing the Components . 24

Selecting the Service Account . 27

Using the Reporting Services Configuration Manager 28

Configuring Virtual Directories . 29

Specifying the Report Server Database . 31

Specifying Report Delivery Options . 32

Verifying the Installation. 34

Chapter 2 Quick Reference. 36

3 Building Your First Report . 37

Authoring a Report . 37

Starting a New Report . 38

Connecting to a Data Source. 40

Getting Data for the Report . 43

Structuring Data in the Report . 45

Placing Data in the Report Structure . 46

Applying a Style Template . 48

Finishing the Report Wizard . 49

Checking the Report Layout . 51

Correcting Report Layout Issues . 55

Publishing a Report . 57

Managing a Report . 59

Reviewing Report Properties . 59

Changing Report Properties . 62

Reviewing Execution Properties . 63

Changing Data Sources Properties . 65

Changing Execution Properties . 66

Accessing a Report . 67

Displaying a Report . 67

Searching a Report . 68

Exporting a Report . 69

Chapter 3 Quick Reference. 71

6-2250-7.book Page iv Tuesday, March 21, 2006 3:45 PM

Table of Contents v

Part II Authoring Reports

4 Developing Basic Reports . 75

Understanding a Report Definition File . 75

Preparing a Report Using Report Designer . 76

Creating a New Report Project . 76

Creating a New Report . 77

Connecting to a Data Source . 78

Working with Datasets . 79

Structuring a Report Using Report Designer . 82

Adding Items from the Toolbox . 82

Working with Table Rows . 83

Sorting Table Rows . 86

Grouping Data in a Table . 88

Adding Group Headers . 91

Computing Group Subtotals. 92

Formatting a Report Using Report Designer . 93

Setting the Format Property. 93

Applying Styles . 94

Editing Properties. 96

Adding Floating Headers . 98

Triggering Page Breaks . 100

Adding a Textbox . 100

Setting Table Properties . 103

Working with Page Headers . 104

Working with Page Footers . 105

Adding Graphical Elements . 106

Adding Images . 108

Chapter 4 Quick Reference . 111

5 Working with Expressions. 113

Using Expressions to Calculate Values. 113

Creating Calculated Fields. 114

Using Global Variables . 119

Using the ReportItems Collection . 122

6-2250-7.book Page v Tuesday, March 21, 2006 3:45 PM

vi Table of Contents

Using Aggregate Functions . 125

Using Aggregate Functions in a Table . 127

Using Aggregate Functions in a Textbox . 129

Using Expressions to Change an Object’s Behavior . 132

Using Conditional Formatting . 132

Sorting. 133

Chapter 5 Quick Reference. 135

6 Organizing Data in Reports . 137

Understanding Data Regions . 137

Comparing Types of Data Regions . 137

Using Data Regions . 138

Using a Matrix . 138

Adding a Matrix Data Region . 139

Grouping Rows. 140

Sorting Rows. 141

Grouping Columns . 142

Using Subtotals in a Matrix . 144

Using Static Rows and Columns in a Matrix . 146

Using a Chart . 148

Adding a Chart. 148

Adding Values and Column Groups to a Chart. 149

Grouping Data by Series. 150

Adding a Chart Legend . 152

Setting Chart Properties . 154

Using a List . 155

Adding a List. 156

Grouping and Sorting a List. 157

Using Fields in a List . 157

Nesting Data Regions . 158

Chapter 6 Quick Reference. 160

7 Building Advanced Reports . 161

Using Parameters to Change Report Data . 161

Adding a Report Parameter . 162

6-2250-7.book Page vi Tuesday, March 21, 2006 3:45 PM

Table of Contents vii

Using the Parameters Collection . 164

Adding a Query Parameter. 167

Supplying Values for a Query Parameter . 169

Creating a Report Parameter for a Filter. 172

Adding a Filter . 175

Adding a Parameter Value to a Report . 177

Linking Information with Interactive Features . 177

Adding Actions . 179

Using the Hidden Property . 182

Using the ToggleItem Property. 183

Adding a Subreport . 186

Working with Hierarchical Data . 188

Displaying a Recursive Hierarchy in a Data Region. 189

Using the Level Function . 191

Using the Recursive Keyword . 192

Creating an Analysis Services Data Source and Dataset 194

Using an Analysis Services Dataset . 196

Chapter 7 Quick Reference . 197

8 Building Report Models . 199

Understanding Report Models . 199

Creating a Report Model. 200

Adding a Report Model Data Source . 200

Adding a Data Source View . 201

Adding a Report Model. 204

Reviewing a Report Model . 207

Modifying a Report Model . 211

Changing Model Objects . 212

Organizing Model Objects . 215

Adding Source Fields . 220

Adding Expressions . 222

Managing a Report Model . 223

Publishing a Report Model . 224

Securing a Report Model . 226

Chapter 8 Quick Reference . 229

6-2250-7.book Page vii Tuesday, March 21, 2006 3:45 PM

viii Table of Contents

Part III Managing the Report Server

9 Managing Content. 233

Publishing Reports. 233

Defining Deployment Properties by Project . 234

Deploying Reports. 236

Uploading Reports. 239

Creating a Script File . 240

Using the rs Utility . 241

Organizing Content . 242

Working with Folders . 242

Moving Content. 244

Linking Reports . 246

Working with General Properties . 248

Using Properties to Manage Report Content . 250

Working with Data Sources . 250

Specifying a Default Value . 253

Disabling a Parameter Prompt . 255

Managing Report Execution. 256

Executing Reports with Current Data . 257

Implementing Cached Instances . 259

Working with Shared Schedules . 261

Managing Snapshots. 263

Using Report History. 266

Chapter 9 Quick Reference. 268

10 Managing Security. 271

Using Report Server Security . 271

Adding Role Assignments . 272

Applying Item Security . 277

Applying System Security . 280

Applying Data Security . 285

Using Roles and Parameters to Restrict Data . 285

Restricting the Source Query by User. 288

Filtering the Report Data by User . 293

Chapter 10 Quick Reference . 296

6-2250-7.book Page viii Tuesday, March 21, 2006 3:45 PM

Table of Contents ix

11 Managing Server Components . 299

Configuring Reporting Services . 299

Editing the rsreportserver.config File . 300

Changing Encrypted Configuration Information
Using the rsconfig Utility . 302

Configuring Tracing on the Report Server . 305

Managing the Report Server . 307

How to Monitor Performance . 308

Managing Execution Logging . 308

Initializing an Execution Log Database . 309

Using an Execution Log Report . 312

Adding Current Data to the Execution Log . 315

Applying Time-outs to Source Queries. 317

Applying Time-outs to Report Execution . 318

Canceling Jobs . 320

Disabling a Shared Data Source. 321

Administering Reporting Services Databases. 324

Monitoring Database Storage Consumption . 324

Implementing a Backup and Restore Strategy . 326

Chapter 11 Quick Reference . 328

Part IV Delivering Reports

12 Accessing Reports . 333

Finding and Viewing Reports . 333

Navigating the Folder Hierarchy . 334

Refreshing Reports . 336

Searching for Reports . 337

Using the HTML Viewer. 339

Using My Reports . 342

Saving Reports for Future Reference . 346

Creating a Report History Snapshot . 347

Saving Reports to Local Files . 349

Printing Reports . 351

Chapter 12 Quick Reference . 353

6-2250-7.book Page ix Tuesday, March 21, 2006 3:45 PM

x Table of Contents

13 Rendering Reports . 355

Comparing Rendering Formats . 355

Rendering for Online Viewing . 356

Rendering as MHTML . 356

Rendering for Document Management . 358

Rendering as a TIFF File . 358

Rendering as a PDF File . 362

Rendering for Data Exchange . 367

Rendering as an Excel File . 367

Rendering a Report as a CSV File . 371

Rendering a Report as an XML File. 373

Chapter 13 Quick Reference . 374

14 Managing Subscriptions . 375

Creating a Standard Subscription . 375

Delivering a Report by E-Mail . 376

Delivering a Report to a File Share . 383

Creating a Data-Driven Subscription . 389

Creating a Subscription Delivery Table. 389

Creating a Data-Driven Subscription . 390

Managing Subscriptions . 398

Using the My Subscriptions Page . 399

Deleting Subscriptions . 403

Chapter 14 Quick Reference . 404

15 Creating Reports with Report Builder. 405

Building Basic Reports. 405

Getting Started with Report Builder . 405

Building a Report . 408

Building a Matrix Report . 412

Using Clickthrough . 415

Building a Chart Report . 417

Enhancing Reports. 420

Formatting a Report . 421

6-2250-7.book Page x Tuesday, March 21, 2006 3:45 PM

Table of Contents xi

Filtering a Report . 423

Adding Expressions . 426

Chapter 15 Quick Reference . 428

Part V Programming Reporting Services

16 Report Authoring with Custom Development 433

Using Custom Code . 433

Adding Custom Code to a Report . 434

Accessing Functions Using the Code Global Member 436

Creating a Custom Class Library . 438

Using Functions from a Custom Assembly. 441

Creating Custom Data Processing Extensions . 446

Assigning a Namespace . 447

Creating a Connection Object . 448

Creating a Command Object . 450

Creating a Data Reader Object . 451

Deploying a Custom Data Processing Extension. 454

Generating Report Definition Language. 462

Creating a Console Application . 462

Adding a Data Source Connection . 464

Generating a Fields List . 465

Generating the RDL . 466

Chapter 16 Quick Reference . 469

17 Programming Report Server Management . 471

Understanding Web Services . 471

Using the rs Utility . 472

Querying Report Server . 474

Using a Custom Application to Manage Reporting Services. 477

Querying Report Server . 478

Managing Reports . 485

Using the Reporting Services WMI Provider . 493

Querying a Report Server . 493

Chapter 17 Quick Reference . 497

6-2250-7.book Page xi Tuesday, March 21, 2006 3:45 PM

xii Table of Contents

18 Building Custom Reporting Tools . 499

Using URLs . 499

How to Use URLs to Access Reports . 500

Viewing Reports . 500

Working with Report Parameters . 503

Using URL Access Parameters . 505

Using the Web Service . 510

Rendering a Report . 511

Authenticating Users. 515

Using Report Parameters in a Control . 517

Enabling Multiselect for Parameters. 524

Chapter 18 Quick Reference . 527

Glossary . 529

Index. 531

What do you think of this book?
We want to hear from you!

Microsoft is interested in hearing your feedback about this publication so we can
continually improve our books and learning resources for you. To participate in a brief
online survey, please visit: www.microsoft.com/learning/booksurvey/

6-2250-7.book Page xii Tuesday, March 21, 2006 3:45 PM

xiii

Introduction

Microsoft Reporting Services is the component of Microsoft SQL Server 2005 that adds a
server-based reporting solution to the Microsoft business intelligence framework. The goal of
this book is to guide you through the installation of Reporting Services and through each
stage of the reporting life cycle so that you can easily create, manage, and share reports in your
organization. In support of this goal, step-by-step exercises are included to give you the oppor-
tunity to explore Reporting Services with confidence. When you complete these exercises,
you’ll be ready to tackle real-world reporting challenges!

To help you learn the many features of Reporting Services, this book is organized into five
parts. Part I, “Getting Started with Reporting Services,” explains how the components of
Reporting Services fully support the reporting life cycle, shows you how to install these com-
ponents, and provides you with a hands-on introduction to the reporting life cycle. Part II,
“Authoring Reports,” starts by showing you how to build simple reports, then gradually intro-
duces advanced techniques to teach you how to use Reporting Services features to satisfy a
variety of reporting requirements. Part III, “Managing the Report Server,” covers all of the
activities that you need to perform when managing the reporting environment. Part IV, “Deliv-
ering Reports,” describes the many ways that you can use Reporting Services to provide
reports to the user community. Part V, “Programming Reporting Services,” introduces how to
use Reporting Services as a development platform for custom applications that author, man-
age, or deliver reports.

Finding Your Best Starting Point
Although the range of topics addressed in this book is comprehensive, this book also caters to
readers with varying skills who are involved in one or more stages of the reporting life cycle.
Accordingly, you can choose to read only the chapters that apply to the stages of the reporting
cycle for which you are responsible and skip the remaining chapters. To find the best place to
start, use the following table.

If you are Follow these steps

An information worker or analyst
who develops reports

1. Install the sample files as described in “Installing and
Using the Sample Files.”

2. Work through Part I to get an overview of Reporting
Services and to install the product on your computer.

3. Complete Part II to develop the necessary skills to author
reports.

4. Review the chapters that interest you in Part IV to under-
stand how reports are accessed by users and how to use
Report Builder as an alternative for report development.

6-2250-7.book Page xiii Tuesday, March 21, 2006 3:45 PM

xiv Introduction

About the Companion CD-ROM
The CD that accompanies this book contains the sample files that you need to follow the step-
by-step exercises throughout the book. For example, in Chapter 3, “Building Your First
Report,” you use a sample file that contains a SQL query so you don’t have to type in the
query yourself. In other chapters, you use Microsoft Visual Studio solution files that have
reports or programs created for you as starting points in preparation for adding other features
to the reports or programs. These sample files allow you to build on what you’ve learned
rather than spend time setting up the prerequisites for an exercise.

System Requirements
To install Reporting Services and to use the samples provided on the companion CD, your
computer configuration will need to meet the following requirements:

■ Microsoft Windows 2000, Windows XP Professional, or Windows Server 2003 with the
latest service pack installed.

■ Microsoft SQL Server 2005, Developer or Enterprise Edition with any available ser-
vice packs installed and using Windows or Mixed Mode authentication. Refer to the

An administrator who maintains
server resources

1. Install the sample files as described in “Installing and
Using the Sample Files.”

2. Complete Part I to understand the technologies used by
Reporting Services and to install the product on your
computer.

3. Complete Part III to learn how to manage and secure
content on the server and how to configure and manage
server components.

An information consumer who
uses reports to make decisions

1. Install the sample files as described in “Installing and
Using the Sample Files.”

2. Complete Chapter 2 to install the product on your
computer.

3. Work through Part IV to discover how to retrieve and save
reports, how to subscribe to reports, and how to use
Report Builder to develop your own reports.

A programmer who develops
applications with reporting
functionality

1. Install the sample files as described in “Installing and
Using the Sample Files.”

2. Work through Part I to get an overview of Reporting
Services and install the product on your computer.

3. Skim Parts II–IV to understand the functionality that is
included in Reporting Services.

4. Work through one or more chapters that interest you in
Part V to explore specific areas of customization.

If you are Follow these steps

6-2250-7.book Page xiv Tuesday, March 21, 2006 3:45 PM

Introduction xv

Operating System Requirements listed at http://msdn2.microsoft.com/en-us/library
/ms143506(en-US,SQL.90).aspx to determine which edition is compatible with your
operating system.

■ Microsoft Internet Explorer 6.0 SP1 or later.

■ Microsoft Internet Information Services (IIS) 5.0 or later.

The step-by-step exercises in this book and the accompanying practice files were tested using
Windows XP Professional and Microsoft SQL Server 2005 Developer Edition. If you’re using
another version of the operating system or a different edition of either application, you might
notice some slight differences.

Installing and Using the Sample Files
The sample files require approximately 140 MB of disk space on your computer. To install and
prepare the sample files for use with the exercises in this book, follow these steps:

1. Remove the CD-ROM from its package at the back of this book and insert it into your
CD-ROM drive.

Note If the presence of the CD-ROM is automatically detected and a Start window is
displayed, you can skip to Step 4.

2. Click the Start button, click Run, and then type D:\startcd in the Open box, replacing
the drive letter with the correct letter for your CD-ROM drive if necessary.

3. Click Install Sample Files to launch the Setup program, and then follow the directions
on the screen.

The sample files will be copied from the CD-ROM to your local hard drive. The default
installation folder is C:\Documents and Settings\<username>\My Documents
\Microsoft Press\rs2005sbs, where <username> is the login name you use to operate your
computer. You can change this installation folder to a different location and reference the
new location when working through the exercises. For each chapter that uses sample files,
you will find a corresponding folder in the rs2005sbs folder. You’ll be instructed where to
find the appropriate sample files when an exercise requires the use of an existing file.

Tip In the C:\Documents and Settings\<username>\My Documents\Microsoft Press
\rs2005sbs\Answers folder, you will find a separate folder for each chapter in which you
make changes to the sample files. The files in these folders are copies of these sample
files when you complete a chapter. You can refer to these files if you want to preview the
results of completing all exercises in a chapter.

4. Remove the CD-ROM from the drive when installation is complete.

6-2250-7.book Page xv Tuesday, March 21, 2006 3:45 PM

xvi Introduction

Now that you’ve completed installation of the sample files, you need to follow some
additional steps to prepare your computer to use these files. You start by setting up fic-
tional user accounts and groups.

5. Click Start, right-click My Computer, and then click Manage.

Important Do not create these accounts on a production server. It is recommended
that you work through the exercises in this book on a test or development server. If you
don’t plan to perform the exercises in Chapter 10, “Managing Security,” or Chapter 14,
“Managing Subscriptions,” you can skip to Step 18.

6. Expand Local Users and Groups, right-click the Users folder, and then click New User.

7. Type EuropeDirector in the User Name, Password, and Confirm Password boxes to cre-
ate a new account, and then click Create.

8. Repeat the previous step to create the following accounts: PacificDirector, NADirector,
and SalesAnalyst.

9. Click Close.

10. Right-click the Groups folder, and then click New Group.

11. Type AWSalesDirector in the Group Name box, and then click Add.

12. In the text box, type EuropeDirector;PacificDirector;NADirector.

13. Click OK to close all dialog boxes.

14. Right-click the Groups folder, and then click New Group.

15. Type AWSalesAnalyst in the Group Name box, and then click Add.

16. In the text box, type SalesAnalyst.

17. Click OK to close all dialog boxes.

18. Click Start, click Run, and then type C:\Documents and Settings\<username>\My
Documents\Microsoft Press\rs2005sbs\Setup\Restore\restore_databases.cmd in
the Open box.

This step attaches the SQL Server databases that are the data sources for the reports that
you will create and use throughout this book. It also creates the user logins and user
tables that are used for demonstrating security and subscriptions.

19. Open SQL Server Management Studio, connect to Analysis Services, right-click the Data-
bases folder, select Restore, type rs2005sbs in the Restore Database box, click Browse,
type C:\Documents and Settings\<username>\My Documents\Microsoft Press
\rs2005sbs\Setup\Database in the Selected Path box, type rs2005sbs.abf in the File
Name box, and then click OK twice.

6-2250-7.book Page xvi Tuesday, March 21, 2006 3:45 PM

Introduction xvii

This step restores the database that is used to demonstrate how to use an Analysis Services
database as a data source for a report.

You’re now ready to get started!

Conventions and Features in This Book
To use your time effectively, be sure that you understand the stylistic conventions that are
used throughout this book. The following list explains these conventions:

■ Hands-on exercises for you to follow are presented as lists of numbered steps (1, 2, and
so on).

■ Text that you are to type appears in bold type.

■ Properties that you need to set in Visual Studio or in Report Manager are sometimes dis-
played in a table as you work through steps.

■ Pressing two keys at the same time is indicated by a plus sign between the two key names,
such as Alt+Tab when you need to hold down the Alt key while pressing the Tab key.

■ A note that is labeled as Note is used to give you more information about a specific topic.

■ A note that is labeled as Important is used to point out information that can help you
avoid a problem.

■ A note that is labeled as Tip is used to convey advice that you might find useful when
using Reporting Services.

6-2250-7.book Page xvii Tuesday, March 21, 2006 3:45 PM

6-2250-7.book Page xviii Tuesday, March 21, 2006 3:45 PM

Part I
Getting Started with Reporting
Services

In this part:

Chapter 1: Understanding Reporting .3

Chapter 2: Installing Reporting Services .17

Chapter 3: Building Your First Report .37

The chapters in Part I provide a broad introduction to Microsoft SQL Server 2005 Reporting
Services (Reporting Services). This chapter explains reporting and how Reporting Services
supports this function. Chapter 2, “Installing Reporting Services,” shows you how to install
the components and explains the implication of decisions that you must make as you cre-
ate your reporting environment. In Chapter 3, “Building Your First Report,” you get your
first hands-on experience with the reporting life cycle to prepare for examining Reporting
Services components in greater detail throughout the remainder of this book.

6-2250-7.book Page 1 Tuesday, March 21, 2006 3:45 PM

6-2250-7.book Page 2 Tuesday, March 21, 2006 3:45 PM

3

Chapter 1

Understanding Reporting

After completing this chapter, you will be able to:

■ Understand the purpose of enterprise and ad hoc reporting.

■ Recognize the characteristics of a reporting platform.

■ List the constituents of reporting user communities.

■ Describe the stages of the reporting life cycle.

■ List the features and components of Microsoft SQL Server 2005 Reporting Services.

In this chapter, you see what enterprise reporting and ad hoc reporting are all about, as well as
how they differ from other types of reporting. You also review how different groups within
your organization need to use or support reporting and how they participate in the reporting
life cycle. With this foundation, you’ll better understand how the various components of
Reporting Services fully support the reporting needs of your organization.

Reporting Scenarios
Since you’re reading this book, it’s likely that you work for a company that needs to be able to
share information. Whether your company is small or large, can you imagine what would hap-
pen if employees couldn’t access the information they need to do their jobs? The decisions
that each individual employee makes during the course of his daily tasks have a profound
impact on successful business operations and rely on easy and regular access to information.

One way that a company commonly shares information is through enterprise reports. For the
purposes of this book, an enterprise report is considered to be the presentation of information
that is formally distributed to some or all individuals across an enterprise, or even to individ-
uals outside the enterprise. This information can be presented in a variety of formats, for
example, as a Microsoft Excel spreadsheet or a text document. It can also be delivered as a
printed report or sent to a list of recipients as an e-mail attachment. Information can also be
made available in a central location, such as on a Web page on a corporate intranet or embed-
ded in a portal where users can access reports when needed.

Sometimes a company needs a less formal way of creating and sharing information, especially
if business dynamics are changing rapidly and there’s a need to provide quick access to current
information to a small group. In this situation, it’s less important to adhere to presentation
standards, yet the quality of information must be consistent with traditional enterprise reports.
These ad hoc reports tend to be simpler than enterprise reports in terms of data content and

6-2250-7.book Page 3 Tuesday, March 21, 2006 3:45 PM

4 Part I: Getting Started with Reporting Services

presentation features, and are usually based on standard nontechnical representations, or
models, of underlying data sources. A business person should be able to create an ad hoc report
without knowing how to write a relational query and without having to wait for technical assis-
tance in order to pull together data to answer a new business question.

The diverse types of organizations that use reporting and the differences in their information
needs make it difficult to compile a comprehensive list of all possible reporting scenarios.
However, you can look at who is using the shared information to develop the following gener-
alizations about reporting scenarios:

■ Internal reporting is probably the most common enterprise reporting. This category of
reporting involves the sharing of information within an organization across all levels of
employees and usually involves standard departmental reports. For example, employees
in the product warehouse might regularly receive detailed printed order reports every
morning. Elsewhere in the company, managers might get a financial statement in an
Excel workbook delivered as an e-mail attachment when the books are closed each
month.

■ External reporting can take many forms, but is defined as disseminating information to
people outside an organization. This information might be printed and mailed, such as
shareholder reports. Increasingly, companies are publishing annual reports as PDFs
(Portable Document Format files) for interested parties. External reporting can even
include the exchange of information between business systems, such as invoicing infor-
mation sent to a customer’s receivables system electronically.

You can also consider how the information is being accessed to develop the following addi-
tional generalizations:

■ Standard reporting relies on a central storage location that can display a list of contents or
a catalog of the available reports so users can find the reports they need. Usually, secu-
rity is applied to report storage to control the reports that individual users can see.
Reports might be organized in a proprietary reporting platform repository or some
other type of document management system.

■ Ad hoc reporting depends on the availability of a model that allows users to select which
data elements should be included in a report, along with a designer tool that allows
them to arrange the layout of these elements to produce a simple report. These reports
might be saved to a central repository to share with others or they might be stored on
the user’s local hard drive for personal reference.

■ Embedded reporting is the integration of reports into portals and in-house or third-party
applications. For example, many companies are migrating to Web-based line-of-business
applications for accounting and payroll functions. Instead of building reporting pro-
cesses into these applications, these companies can leverage an extensible enterprise
reporting platform to allow users to access information by using these applications.

6-2250-7.book Page 4 Tuesday, March 21, 2006 3:45 PM

Chapter 1: Understanding Reporting 5

These reporting scenarios have the following two characteristics in common:

■ Central storage Reports or report models (for ad hoc reporting) are accessed from a
central location. Reports might also be delivered directly to users from a central server.
Many people need access to the same information, possibly in different formats. Often,
access to information needs to be limited to those with a need to know.

■ Standardization Enterprise reports conform to a standard design with a consistent lay-
out, while ad hoc reports conform to a standard data model to ensure consistent results.

In addition, the proliferation of information that can (or should) be available to the average
worker has led to increasingly more sophisticated requirements for an enterprise reporting
solution. For example, users need to be able to do the following:

■ Navigate easily within a large report.

■ Move from one report to another while maintaining context.

■ Access previous versions of a report to compare information at different points in time.

■ View data consolidated from multiple sources into a single report.

An enterprise reporting solution also needs to satisfy administrative requirements. A reporting
platform should have the following characteristics:

■ Flexibility to store a single report from which multiple versions may be generated based
on changeable parameters or user profiles.

■ Ability to support a push-pull paradigm, in which users can seek out the information
they need online or subscribe to information that is sent to them on a periodic basis.

■ Capability to manage reports using a Web interface so that administrators can perform
tasks without being tied to their desks.

Reporting User Communities
Many people within an organization are usually involved in some aspect of reporting. Typi-
cally, users are members of one or more of the following communities: information consum-
ers, information explorers, and analysts.

Most users—typically 65–80 percent of the total user population—are information consumers.
Information consumers usually view static and predefined reports. If they use printed reports,
they might get them the old-fashioned way—someone does a batch print of hard copy reports,
then sends it out or delivers it to each recipient’s in-box. A more technically oriented environ-
ment might make a document repository available, providing the electronic equivalent of a file
cabinet that information consumers can access at will. In some cases, information consumers
need to receive reports on a recurring basis, such as a weekly update on key performance mea-
surements. Some of these users might want to produce their own simpler reports when an
existing report doesn’t answer a particular question.

6-2250-7.book Page 5 Tuesday, March 21, 2006 3:45 PM

6 Part I: Getting Started with Reporting Services

One of the many strengths of Reporting Services is its ability to provide easy access to a wide
array of predefined reports, making information consumers a key audience served by Reporting
Services. Although many people might prefer to view information online, they can still get
printed reports or can get reports delivered via e-mail. In either case, reports can be processed
on demand (where information is as current as the data in the source system) or on a scheduled
basis (where information represents a specific point in time). For maximum flexibility, an infor-
mation consumer can choose from a variety of formats that can be delivered to a range of
devices. Finally, Reporting Services provides ad hoc reporting capabilities so information con-
sumers can obtain quick answers as needed.

Information explorers typically constitute 15–25 percent of the user population. Like infor-
mation consumers, they use predefined reports, but they also interact with reports. For exam-
ple, information explorers commonly use filters to isolate segments of data. Information
explorers might also interact with reports by starting with summary information and then
moving to more granular levels of detail, whether drilling down to view details in the same
report or drilling across to view related information in a separate report.

Interactive reports suitable for information explorers require more work to develop than static
reports, but Reporting Services has a wide array of features to support the development of
these reports. Parameters can be designed into a report to support filtering data at the source
or in the report. An information explorer can change parameter values on demand, or an
administrator can predefine specific parameters for different groups of information explorers.
Reports can also include dynamic visibility to support drilling down or actions to support
drilling across.

The smallest user community, typically representing 5–10 percent of users, includes analysts.
This group possesses the skills to develop free-form reports that facilitate complex data anal-
ysis. Such reports are often in spreadsheet form; through them, analysts can enhance the data
with sophisticated calculations, such as linear regressions and allocations. These reports can
eventually be shared with information consumers and information explorers.

Out of the box, Reporting Services supports analytical needs by providing the ability to export
a report to Excel. Conversely, an Excel workbook created by an analyst can be uploaded to
Reporting Services as a resource to be shared with the rest of the user community. Also,
because Reporting Services is an extensible architecture, a custom application or third-party
plug-in can give analysts complete flexibility to develop free-form reports within the Reporting
Services environment.

The Enterprise Reporting Life Cycle
The enterprise reporting life cycle is a three-stage process through which a report progresses
from authoring to management to delivery. A reporting platform must not only serve the
needs of each reporting community, but must also fully support each stage of the reporting
life cycle. It should also provide the architecture, functionality, and utilities to support the

6-2250-7.book Page 6 Tuesday, March 21, 2006 3:45 PM

Chapter 1: Understanding Reporting 7

activities of authoring, managing, and delivering reports. In other words, everything you need
from the beginning to the end of the reporting process should be in one integrated product
set. Reporting Services provides just that.

Authoring

The primary activities of the authoring stage include defining the data to be presented in a
report, organizing the data into a structured layout, and applying formatting to enhance the
report’s appearance. For example, when executive management needs to monitor sales perfor-
mance across product lines, a report author can create either an enterprise report or an ad hoc
report to present sales data in a table layout. To facilitate analysis, however, the report author
might use conditional formatting to highlight products for which performance exceeds
defined performance goals or fails to meet these goals. This advanced formatting technique is
an enterprise reporting activity.

To support authoring, Reporting Services provides a broad set of features to present data in
structures, such as tables and charts, to group data within these structures, to allow calcu-
lations, and to add formatting. This reporting platform also facilitates access to a variety of
organizational data sources, such as online transaction processing (OLTP) systems or data
warehouses that store relational or online analytical processing (OLAP) data. Reporting
Services allows an enterprise report author to easily combine data from multiple sources
into a single report. All types of structured data are supported for enterprise reports—rela-
tional, hierarchical, and multidimensional data. To access data sources not explicitly sup-
ported by Reporting Services, custom data processing extensions can be added, which
means the possibilities are endless.

In addition, Reporting Services allows the report author to design a report with consideration
for its purpose. An ad hoc report author can add interactive sorting and apply filtering to a
report, while an enterprise report author has access to a rich feature set that enables the devel-
opment of both static and interactive reports for the full spectrum of the user community. For
example, static enterprise reports, such as print-ready invoices for mailing, or interactive
online reports, such as the presentation of key performance indicators accessible from the
corporate portal, can be quickly and easily developed. Interactive reports that factor in how
users need to explore and analyze data can also be designed. Parameters, dynamic visibility,
and actions can be used individually or in combination to affect both the information visible
in an enterprise report and the information’s appearance.

Management

The management stage begins when a report or ad hoc reporting model is published to a
server. This stage continues with the organization of the report or model with other content
on the server and the performance of other administrative tasks, such as setting report prop-
erties, managing report execution, and applying security. Either a report author or an admin-
istrator is responsible for publishing a report to a centrally managed server. When the report

6-2250-7.book Page 7 Tuesday, March 21, 2006 3:45 PM

8 Part I: Getting Started with Reporting Services

is on the server, a report execution schedule can be established to update the report regularly,
such as every Monday morning. In addition, security is applied to the report so that only cer-
tain users, perhaps executive management, can view the report.

Reporting Services provides mechanisms to publish reports and models to a central server
through the authoring tool or through management tools. Once a report is online, security
can be implemented to control access. Further, the execution of reports is configurable so that
reports can be produced on demand or on a scheduled basis. Reporting Services includes all
this functionality using a server infrastructure that can exist on a single server or be distrib-
uted across many servers or incorporated into a Web farm.

Access and Delivery

The access and delivery stage includes all activities related to the distribution of reports from
a central repository, such as accessing reports online, rendering reports to various formats,
saving and printing reports, and subscribing to reports. Some users, for instance, might
choose to receive reports via e-mail as soon as these reports are executed each week or to
receive a notification that a report is available for viewing online. Other users, by contrast,
might prefer to view the reports online using the company intranet only as the need for infor-
mation arises.

To support delivery, Reporting Services can produce reports using a variety of output formats
which are referred to as rendering formats. A report can be made available through the intra-
net using a Web browser, or it can be sent embedded in an e-mail message or as an e-mail
attachment in many formats, such as PDF or Excel. Reporting Services also provides flexible
delivery mechanisms to support both push and pull distribution methods for internal and
external users. Because Reporting Services is an extensible system, you can add rendering for-
mats, different security frameworks, or alternative delivery options. In addition, the access or
delivery of reports can be integrated into corporate applications.

Reporting Services Components
The requirements of a solid enterprise reporting solution are formidable, but Reporting Services
meets this challenge with a set of integrated, multitiered components. Because Reporting Ser-
vices is a Microsoft .NET-based platform that can use both a Web service and an application pro-
gramming interface (API), it can be customized to fit within existing technical infrastructures.
Furthermore, by separating components into discrete functional units, the Reporting Services
architecture can be scaled to accommodate even the largest organization by distributing compo-
nents across several servers. (You learn how to install these components in Chapter 2, “Install-
ing Reporting Services.”) Together, these components support the authoring, management,
access, and delivery requirements of a reporting platform.

The Reporting Services architecture consists of three layers. The application layer includes
two different client components for authoring—one to author enterprise reports, and the other

6-2250-7.book Page 8 Tuesday, March 21, 2006 3:45 PM

Chapter 1: Understanding Reporting 9

to author ad hoc reports. The application layer also includes a client component for managing
one or more Report Servers within a single server management interface, and a server compo-
nent called Report Manager, which is installed on a Web server and used for report access and
for some server management tasks. The server layer is the Report Server where all the process-
ing and management of the reporting platform occurs. The data layer includes data providers
to access data sources used in reports, as well as a pair of databases for the storage of reports
and information used by Report Server. These components can be installed on a single server
or distributed across several servers. The Reporting Services components are illustrated in the
following figure:

Authoring Components

When Reporting Services is installed, a client component called Report Designer is added as
a set of templates to the Microsoft Visual Studio 2005 development environment. If you don’t
have this version of Visual Studio installed, installation of Reporting Services will also install
the requisite components so you can use Report Designer.

Report
Designer

Model
Designer

Configuration
Tool & Utilities

Custom
Tools

Report
Builder

Report
Manager

Web Service

Programmatic Interfaces

Authentication Extensions

Report Processing
Extensions

Rendering Extensions

Data Processing
Extensions

Data Sources

Scheduling and
Delivery Processor Report Processor

Report Server

Delivery Extensions

Report Server
Database

6-2250-7.book Page 9 Tuesday, March 21, 2006 3:45 PM

10 Part I: Getting Started with Reporting Services

The easiest way to build enterprise reports is to use the Report Designer templates. If you’re a
report author, you don’t need to have programming skills to effectively use this tool. However,
if you’re already an experienced programmer, you can also take advantage of the program-
matic interfaces to build a custom authoring tool.

Report Builder is a thin client application that installs on your computer when you first
launch this application through Report Manager or by accessing its URL on the Report Server.
Report Builder is used for ad hoc reporting and, like Report Designer, does not require pro-
gramming skills to create useful reports. In fact, you don’t even need to know how to write a
query to access data, since the query is written for you based on the items you select from the
report model, which is created using Model Designer, another client component that is added
to the Visual Studio environment.

Report Designer

As an enterprise report author, you can use a graphical interface to build feature-rich reports
using drag-and-drop techniques to create a query to retrieve data and to define the layout and
appearance of data in the report. You can use ActiveX Data Objects (ADO) .NET-managed
data providers to access many OLE DB and Open Database Connectivity (ODBC) data
sources. If you need access to other data sources, you can build your own data providers. After
defining a query to retrieve data from a selected data source, you use Report Designer to place
data into one or more structures. You also use Report Designer to apply calculations to the
data, as well as to access a complete set of features that support presentation options such as
formatting and visibility. The result is a report definition in the form of an XML document
using a nonproprietary schema known as Report Definition Language (RDL). You learn about
Report Designer and Report Definition Language in Chapter 4, “Developing Basic Reports.”

Report Designer also includes a preview version of the functionality used by the server to pro-
duce reports, so you can test a report before putting it on the server. That way, you can get an
idea of how the users will see the report while you’re still developing it. When you’re ready to
publish the report to the server, you use the Visual Studio build and deploy processes.

Report Builder

If you’re an ad hoc report author, you employ a separate graphical interface to build simple
reports by using drag-and-drop techniques to retrieve data from a single source and to define
the layout and appearance of data in the report. Instead of defining a data source and building
a query, as you do with Report Designer, you select a report model, which contains the data
connection, metadata, and data relationships needed to produce and execute a query. In the
current release of Report Builder, a report model can only access relational data in a SQL Server
database. If you use the Standard, Enterprise, or Developer Edition, you can also access multi-
dimensional data in an Analysis Services database. After selecting a report model, you select a
table, matrix, or chart template, which becomes the structure into which you place data fields

6-2250-7.book Page 10 Tuesday, March 21, 2006 3:45 PM

Chapter 1: Understanding Reporting 11

defined by the report model. You can also use Report Builder to add your own calculations,
sort or filter data, and apply formatting, such as font colors or styles. You can view the report
within Report Builder and, if you want to share it with other users of Reporting Services, you
can publish the report to the server. You learn about Report Builder in Chapter 15, “Creating
Reports with Report Builder.”

Model Designer

The report model on which Report Builder depends is created using the Model Designer inter-
face. You begin development of the report model by specifying a data source and specifying
which tables and their relationships to use from that data source. Then you use a wizard to
generate a report model, which will become the business description of the underlying data.
You can make changes to the names of objects generated in the model, rearrange and organize
these objects to simplify the users’ navigation in the model, and remove unneeded objects.
You learn about Report Builder in Chapter 8, “Building Report Models.”

Programmatic Interface for Authoring

Using the Reporting Services API, application developers can build custom applications to
create reports or add functionality to reports. In Chapter 16, “Report Authoring with Custom
Development,” you learn how to use custom code to extend the authoring capabilities of
Reporting Services and how to generate RDL files programmatically.

Management Components

After you’ve installed Reporting Services, you can use the Reporting Services Configuration
tool to set or modify configuration settings. The Report Manager is installed on a Web server
and used for both management and for access and delivery tasks. Report management capa-
bilities are also accessible in Microsoft SQL Server Management Studio. All of the tasks you can
perform using Report Manager can also be performed within this management component if
it’s installed on your local computer. Additionally, Reporting Services provides command-line
utilities for specific server management tasks. You also have the option to build your own
Windows or Web-based management tools using the Reporting Services API.

Reporting Services Configuration Tool

The Reporting Services Configuration tool allows you to configure local or remote instances
of Reporting Services. This tool is a client application you can employ to manage virtual direc-
tories used by the report server and Report Manager, define Windows accounts to run the
Web and Windows services, create the report server database, manage encryption keys to pro-
tect report server data, and configure Simple Mail Transfer Protocol (SMTP) settings. Typi-
cally, you configure these settings once after installation, but as your reporting environment
changes, you can use this tool to update the report server configuration.

6-2250-7.book Page 11 Tuesday, March 21, 2006 3:45 PM

12 Part I: Getting Started with Reporting Services

Report Manager

Report Manager is a Web-based content management tool included with Reporting Services.
Reporting Services separates administrative tasks into two main groups: content manage-
ment and system management. If you’re an administrator responsible for content manage-
ment, you can use Report Manager to manage how reports are organized on the Report Server
and how users interact with those reports. Content management using Report Manager is
covered in more detail in Chapter 9, “Managing Content.” As an administrator responsible for
server resources and performance, you can use Report Manager to configure execution
options (described in Chapter 9), to set security (described in Chapter 10, “Managing Secu-
rity”), and to manage subscription and delivery options (described in Chapter 14, “Managing
Subscriptions”).

Microsoft SQL Server Management Studio

Microsoft SQL Server Management Studio is a new workstation component provided with
Microsoft SQL Server 2005 as a single environment from which to administer any of the
server components of SQL Server. This environment does not replace Report Manager, nor
does it provide additional features. Instead, it gives you another way to perform the same
activities. For example, you can manage content, configure security, and set options for report
execution or subscriptions from the same management interface that you use to manage SQL
Server or Analysis Services if you’re responsible for administering these other server types.
This interface can also be useful if you manage multiple report servers.

Command-Line Utilities

Reporting Services includes command-line utilities that allow you to manage a Report Server
locally or from a remote location. The following command-line utilities are provided by
Reporting Services for server administrators:

■ rsconfig A connection management utility that can change the connection used by
Report Server to connect to the ReportServer database.

■ rs A script host that you can use to execute Microsoft Visual Basic .NET scripts for man-
agement tasks, such as publishing reports or copying data between ReportServer data-
bases.

■ rskeymgmt An encryption key management tool that you can use to back up encryp-
tion keys for future recovery of a database or to change encrypted data used by a Report
Server.

You learn more about these utilities in Chapter 11, “Managing Server Components,” except for
the rs utility, which is discussed in Chapter 17, “Programming Report Server Management.”

6-2250-7.book Page 12 Tuesday, March 21, 2006 3:45 PM

Chapter 1: Understanding Reporting 13

Programmatic Interface for Management

You can also use the Reporting Services API to perform server management activities, such as
publishing or deleting reports. You can build your own application, or you can build Visual
Basic .NET scripts to use in conjunction with the rs utility to perform administrative tasks on
Report Server. You learn how to use the Reporting Services API for server management in
Chapter 17.

Access and Delivery Components

The components of Reporting Services that are involved in the access and delivery of reports
break down into two groups: client components and server components. You can choose to
use the supplied client components or build your own client applications. However, you must
use the core server components of Reporting Services, although you can use custom or third-
party applications to extend the capabilities of the server components.

Report Manager

Report Manager is not just a management tool. The user community also uses Report Man-
ager to access reports and subscribe to reports. You learn about general report access using
Report Manager in Chapter 12, “Accessing Reports.”

Processor Components

Report Server is the heart of Reporting Services. Although administrators interact with Report
Server using the management components, the bulk of activity that occurs on Report Server is
related to supporting the access and delivery of reports. Report Server runs as a Web service,
allowing Report Manager, your own custom programs, and third-party applications to access
server processes.

Report Server uses Microsoft Internet Information Services (IIS) to receive requests, and then
activates the applicable subcomponents in response to the requests. There are two processor
subcomponents of Report Server that act as command central to manage these requests and
the corresponding output returned by the other subcomponents. The core processor, Report
Processor, handles all requests related to the execution of reports and the production of the
final output. To complete these requests, the Report Processor calls other subcomponents,
referred to as extensions, to handle data processing, rendering, and security. The Scheduling
and Delivery Processor responds to scheduled events and delivers reports. This processor
uses delivery extensions to send reports to their destinations.

Report Processor The Report Processor is responsible for retrieving the report layout from
the report definition and merging it with data returned from the query included in the report
definition. At this point, the report is in an intermediate format. What happens next depends
on the report request. If a user wants to see the report online, the intermediate format is

6-2250-7.book Page 13 Tuesday, March 21, 2006 3:45 PM

14 Part I: Getting Started with Reporting Services

passed to the appropriate rendering extension so the proper output format can be created,
such as a Web page.

On the other hand, if the request is to generate a report snapshot (which is a report at a specific
point in time), the intermediate format is stored in the ReportServer database. When a user
requests the snapshot, the Report Processor retrieves the intermediate format, calls the ren-
dering extension, and then sends the final format of the report to the user.

The Report Processor also manages requests for report models. These requests occur when a
user browses a report model or runs a report in Report Builder, including drillthrough reports.

By separating the presentation processing from data retrieval and rendering, multiple users
can view the same report at the same time, and each can change the viewing format. You learn
more about execution options in Chapter 9.

Scheduling and Delivery Processor As its name implies, the Scheduling and Delivery Pro-
cessor is responsible for running scheduled reports and for delivering reports to a location or
a device on a scheduled basis. It uses SQL Server Agent to process schedules. When the appli-
cable time arrives, SQL Server Agent sends instructions related to the schedule to the Sched-
uling and Delivery Processor. The report is rendered and passed to the delivery extension to
send the report to specified recipients or a target location on a file share.

A report snapshot is an example of a scheduled report. The schedule information is specified
by a user or administrator using Report Manager and stored in the ReportServer database.
When the Scheduling and Delivery Processor finishes processing the snapshot, the interme-
diate format is stored in the ReportServer database. When a user wants to view the report,
Report Server takes over by retrieving the intermediate format of the snapshot and calling the
specified rendering extension to finalize the output. You learn more about scheduling reports
in Chapter 9.

When users subscribe to reports, the desired delivery extension is selected and the time of
delivery is specified. When the time comes to deliver a report, the Scheduling and Delivery
Processor gets a rendered report and then passes the report to the applicable delivery exten-
sion. Delivery options for subscriptions are described in Chapter 14.

Server Extensions

Server extensions are used to perform specific functions. Reporting Services uses five different
types of server extensions: authentication, data processing, report processing, rendering, and
delivery. Over time, you can expect to see more extensions available for Reporting Services,
whether developed by Microsoft or by other commercial software developers.

Authentication Extensions Authentication extensions are used to define the authorization
model used by Reporting Services. Only one authentication extension is supplied, which sup-
ports Microsoft Windows and SQL Server security. You can, of course, create your own
authentication extension to integrate Reporting Services with another security architecture.

6-2250-7.book Page 14 Tuesday, March 21, 2006 3:45 PM

Chapter 1: Understanding Reporting 15

Data Processing Extensions Data processing extensions are responsible for processing the
query requests received from the Report Processor. The query request includes a data source,
a query, and possibly, query parameters. The applicable data processing extension then opens
a connection to the data source, returns a list of field names from the query, executes the
query, and retrieves the query results, which are then returned to the Report Processor.

Reporting Services comes with six data processing extensions: SQL Server, Analysis Services,
Oracle, OLE DB, ODBC, and XML. However, you can also use any ADO.NET data provider or
build your own data processing extensions. You learn how to create a custom data processing
extension in Chapter 16.

Report Processing Extensions Report processing extensions are used to process custom
report items that may be embedded in a report. The Report Server already knows how to pro-
cess standard report items, such as tables and text boxes, but if you add a custom report item—
like a special gauge control or an embedded map from Microsoft MapPoint—then you need to
provide an extension to handle the custom processing required by the new report item.

Rendering Extensions Rendering extensions are called by the Report Processor to take the
data that was received from the data processing extension and merge that data with the report
definition. The result is a finished report in a format specific to the device that will receive the
report.

At the time of this writing, Reporting Services has the following rendering extensions: HTML,
MHTML (MIME Encapsulation HTML), Excel, Acrobat PDF, CSV (comma separated values),
and XML. As with other extension types, you can develop your own rendering extension to
produce other output formats.

Delivery Extensions Reporting Services currently includes the following three delivery
extensions:

■ The e-mail delivery extension allows Reporting Services to embed a report in an e-mail
message or send the report as an attachment. Alternatively, an e-mail notification can be
sent that includes a link to the report. If the delivery is an e-mail notification, it can also
be sent without the link to a pager, cellular phone, or any device that can receive a sim-
ple message.

■ The file share delivery extension can be used to store reports in a centrally accessible
location independent of the ReportServer database or as part of a report archive strategy.

■ A null delivery provider is available for data-driven subscriptions to periodically load
reports into the cache in advance of user viewing. This option is useful for reports that
take a long time to execute.

You can also develop your own delivery extension to expand the delivery functionality of
Reporting Services.

6-2250-7.book Page 15 Tuesday, March 21, 2006 3:45 PM

16 Part I: Getting Started with Reporting Services

ReportServer Databases

Reporting Services centralizes report storage in two SQL Server databases. The ReportServer
database stores information used to manage reports and resources, along with the reports
themselves. In addition, this database is the storage location for security settings, encrypted
data, data related to schedules and delivery, and information about extensions. The Report-
ServerTempDB database stores temporary data used for caching purposes. More information
about these databases can be found in Chapter 11.

Programmatic Interface for Access and Delivery

You can use the Reporting Services API to create assemblies when you need to accommodate
specialized security, data processing, rendering, or delivery scenarios. In Chapter 16, you
learn how to build a custom data processing extension. The Reporting Services API also
enables you to develop your own applications to allow users to view reports or to produce
reports using different formats. You learn more about custom reporting in Chapter 18, “Build-
ing Custom Reporting Tools.”

Chapter 1 Quick Reference

This term Means this

Report Information that is structured and formatted for print or online viewing.

Enterprise reporting Sharing of information on a regular basis across a wide audience.

Ad hoc reporting Reviewing, and possibly sharing, limited information with limited format-
ting requirements on an as-needed basis.

Enterprise reporting life cycle The process of authoring, managing, and accessing reports.

Extensions Subcomponents of Report Server used to provide specific functionality,
such as data processing, rendering, report processing, authentication,
and delivery.

Intermediate format The result of merging data from a query with layout information from a
report definition. The intermediate format is sent to a rendering exten-
sion to produce the final output, such as a Web page or an Excel file.

Report snapshot A report that preserves a record of data at a point in time. A report snap-
shot is stored in the ReportServer database in its intermediate format and
rendered only when a user requests the report.

6-2250-7.book Page 16 Tuesday, March 21, 2006 3:45 PM

17

Chapter 2

Installing Reporting Services

After completing this chapter, you will be able to:

■ Select an edition and configuration of Reporting Services appropriate to your site.

■ Prepare your technical infrastructure for a successful installation.

■ Install Reporting Services.

In Chapter 1, “Understanding Reporting,” you learned how the various components of
Reporting Services combine to fully support enterprise reporting requirements. By under-
standing how each component functions and interacts with other components, you can better
decide how to deploy Reporting Services in your organization. This chapter explains the avail-
able deployment options, reviews the prerequisites for installation, and walks you through an
installation of Reporting Services.

Considering Deployment Options
To use Reporting Services to support the authoring, management, and delivery of reports, you
need to install its components. But which components should you install—and where? Before
you can start installing, you must understand how features compare across the five Reporting
Services editions and how one or more servers can be configured to support Reporting Services.
You also need to consider whether the existing naming conventions of your Web applications
will influence the names that you assign to the virtual directories used by Report Server and
Report Manager.

Choosing a Reporting Services Edition

Reporting Services is bundled with Microsoft SQL Server 2005, which is available in four
separate editions (Express, Workgroup, Standard, and Enterprise). You can choose to imple-
ment any of the three corresponding Reporting Services editions for production—Workgroup
Edition, Standard Edition, or Enterprise Edition. For development purposes, you can imple-
ment Developer Edition. Reporting Services is even available with SQL Server 2005 Express
edition, which is useful for simple Web or client applications requiring basic reporting capa-
bilities. If you’re still evaluating Reporting Services, use the SQL Server 2005 Trial Software.
You should understand the differences in features supported by each Reporting Services
edition to make the proper selection. You can select from the following editions:

6-2250-7.book Page 17 Tuesday, March 21, 2006 3:45 PM

18 Part I: Getting Started with Reporting Services

■ Workgroup Edition Supports a single server configuration only. This edition does not
support online analytical processing (OLAP) data sources, subscriptions, and many
other features available in the Standard and Enterprise Editions. Rendering formats is
limited to Excel, Portable Document Format (PDF), Image, remote graphics device inter-
face (RGDI), Print, and Dynamic HTML (DHTML). Report Builder is supported using a
SQL Server relational data source only. Use Workgroup Edition when you want an
entry-level reporting solution for a branch office or departmental workgroup.

■ Standard Edition Supports a single server configuration only. This edition does not
support subscriptions that use a database query to set delivery options, known as data-
driven subscriptions, and does not support scale-out deployment. Report Builder does
not include the Infinite Clickthrough feature in this edition. Use Standard Edition when
you have a limited number of users in a small-sized or medium-sized business.

■ Enterprise Edition Supports a Web farm configuration that scales to satisfy high-volume
reporting requirements and a large user population. Enterprise edition supports data-
driven subscriptions as well as Infinite Clickthrough in Report Builder. This edition is
required for deploying a large-scale reporting platform.

■ Developer Edition Supports all features of Enterprise edition, but is licensed only for
use in a development and test environment. If you’re a developer who is building cus-
tom applications for Reporting Services, or if you need a separate environment for
authoring reports or for viewing your reports on a test Report Server, use this edition.

■ Trial Software Supports all features of the Enterprise edition, but expires after 180
days. You can use SQL Server 2005 Trial Software to explore all the features of Reporting
Services before making a purchasing decision.

Note When you decide to upgrade, you can simply install the Standard or Enterprise
edition on the same server. You don’t need to uninstall the Trial Software first. During the
installation process, you’re prompted for the name of the Report Server database. Just
use the same database name that was created for use with the Evaluation edition, and
you’re all set!

Planning a Site Configuration

If you’re using Express, Workgroup, or Standard editions, you must use the single server config-
uration for your Reporting Services deployment. You can use any of the other editions to deploy
Reporting Services in a multiple server configuration. If you choose the multiple server configu-
ration, remember that the Enterprise edition is the only edition licensed for production usage.

A single server deployment of Reporting Services requires only that you install Report Server
and Report Manager on the same server. You have the option to install the Reporting Services
databases on a local or remote SQL Server instance. However, the instance that you use must
be either in the same domain or in a trusted domain. During the installation, when you select
the SQL Server instance, you will also have an opportunity to supply a name for the main
Reporting Services database. By default, the main database is named ReportServer and its

6-2250-7.book Page 18 Tuesday, March 21, 2006 3:45 PM

Chapter 2: Installing Reporting Services 19

companion database is named ReportServerTempDB. If you change the name of the main data-
base, that name will be appended with TempDB to create a name for the companion database.

If you need a reporting platform that supports high availability or high volume, deploy
Reporting Services in a multiple server configuration. In this configuration, multiple Report
Servers run as a single virtual server with one set of Reporting Services databases supporting
all Report Servers. This set of Reporting Services databases can be also be part of a SQL Server
cluster, even if you don’t cluster the Report Servers.

Note Reporting Services does not include tools to manage a Web farm, so you’ll need to use
Microsoft Application Center or third-party software to set one up and manage it. However,
during installation of Reporting Services, you can add a Report Server to an existing Web farm.

Deciding Naming Conventions

In preparation for installation, you will need to consider the naming conventions that you will
use for the Report Server and Report Manager virtual directories on the Web server. Users and
administrators will access these virtual directories when they are using a browser to connect to
Reporting Services. You can accept the default virtual directory names suggested during instal-
lation, or you can supply a different name if you prefer. If you decide to replace the default vir-
tual directory names, use a virtual directory name that’s 50 characters or fewer in length.

By default, the Report Server virtual directory is /ReportServer unless you’re installing
Report Server on a named instance, in which case the default virtual directory is
/ReportServer$NamedInstance. For Report Manager, the default virtual directory is /Reports.

Preparing for Installation
Reporting Services has several prerequisites for installation. More specifically, each compo-
nent of Reporting Services has certain software requirements that must be met for that com-
ponent to be successfully installed. You need to understand how the operating system affects
your installation options, what software must be installed prior to a Reporting Services instal-
lation, and how your technical environment needs to be configured.

Reviewing Operating System Requirements

The server and client components can be installed on any of the following operating systems:
Microsoft Windows 2000 Server, Windows XP Professional, or Windows Server 2003. Of
course, the latest service pack should be installed.

If you’re using Windows Server 2003, you must configure the server as an Application Server
for Microsoft Internet Information Services (IIS) and ASP.NET. To do so using Add Or Remove
Programs in Control Panel, select the Application Server check box, and then click the Details

6-2250-7.book Page 19 Tuesday, March 21, 2006 3:45 PM

20 Part I: Getting Started with Reporting Services

button. Make sure that both the IIS and ASP.NET components are selected in the Application
Server dialog box, click OK to close the dialog box, and then click Next to continue the update
to the server configuration.

Reviewing Software Requirements

Regardless of whether you’re using a single or multiple server configuration, you must install
the server components, Report Server and Report Manager, on a Web server that is already
running IIS 5.0 or later. It’s possible to install these components on separate Web servers
when using Enterprise Edition.

Each Web server on which you install Report Server or Report Manager must be configured to
use the Microsoft .NET Framework version 2.0 or later. The Reporting Services installation pro-
cess will automatically install and register ASP.NET in IIS if the .NET Framework is missing.

Reporting Services also requires a preexisting installation of SQL Server 2005. You must
ensure that the latest service pack—if any—has been installed. The Reporting Services installa-
tion requires access to a SQL Server instance to create a ReportServer database that is used as
a central repository for Reporting Services.

Note If you decide to install the server components on separate Web servers, you’ll need to
first install the ReportServer database independently to a SQL Server instance. You also need to
install the ReportServer database first if you’re using the Standard edition and separating the
server components from the database components. After the ReportServer database is in place,
you can install any of the other components in any order. You’ll then need to specify the SQL
Server instance hosting the ReportServer database during installation of the server components.

Reviewing Configuration Prerequisites

Additionally, the Setup process uses the IWAM_computername account to configure services
on IIS. This account is enabled by default when IIS is installed, but is often disabled for secu-
rity reasons. You’ll need to make sure this account is enabled before starting the Reporting
Services installation. You can disable the account again after the installation is complete.

During installation, virtual directories will be added in IIS to the Default Web Site. For the
Reporting Services installation to successfully complete this task, the IP address of the Default
Web Site must be set to the default value—(All Unassigned). In fact, the installation will fail if
you have disabled the default site.

Note For installation of Reporting Services, you must enable the Default Web Site. If you
choose not to use the default site site, it’s still possible to move the virtual directories following
the installation. You can use the Reporting Services Configuration Manager, which is discussed
later in this chapter, to move these directories.

6-2250-7.book Page 20 Tuesday, March 21, 2006 3:45 PM

Chapter 2: Installing Reporting Services 21

Note Installation of Reporting Services will fail if you select the option to use Secure Sockets
Layer (SSL) connections before the Web server is correctly configured for SSL. If necessary, you
can bypass this step during installation and set up SSL on the Web server later. Then you’ll need
to set the SecureConnectionLevel value to 3 in the RSReportServer configuration file. Editing
configuration files is discussed in Chapter 11, “Managing Server Components.”

Creating Reporting Services Credentials

To install and run Reporting Services, you’ll need to have one or more user accounts available
to perform the following functions:

■ Log on to a SQL Server instance and install the Reporting Services databases When
you install Reporting Services, your account must be a member of the local system
administrator’s group. Your credentials are used by Setup for authentication on the
SQL Server instance that will host the Reporting Services databases, ReportServer,
and ReportServerTempDB. Your credentials are also used to install these databases
to the SQL Server, so you’ll need permissions to create and access databases.

■ Start the ReportServer service This service primarily manages subscriptions and sched-
uled report executions. If you want to use either of these features, the service must be
running. However, you can continue to use other Reporting Services features if this ser-
vice is not running. During Reporting Services installation, you need to specify an
account that will be used to start the ReportServer service. You can choose between a
built-in account or a domain user account.

Important If you’re running Windows 2000 Server, Microsoft recommends that you
use the Local System account, also known as the NT AUTHORITY/SYSTEM built-in
account. Otherwise, you won’t be able to use stored credentials or prompted credentials
with external data sources. There are no similar restrictions if you’re using Windows XP or
Windows Server 2003. Any built-in account or domain user account can be used. (Using
credentials with data sources is explained in Chapter 9, “Managing Content.”)

■ Connect to the Reporting Services databases The Report Server must be able to access
the Reporting Services databases. You can create a dedicated user account for this pur-
pose, either as a service account, a domain account, or a SQL Server login. During instal-
lation of Reporting Services, you must provide the credentials for this account. (If you
choose to use a SQL Server login, this account will be created in the SQL Server instance
if it doesn’t already exist.) Setup will assign the account to the RSExecRole and public
roles on the ReportServer, ReportServerTempDB, master, and msdb databases.

If you choose to use a domain user account to connect to the Reporting Services data-
bases, you must configure SQL Server Agent to use a user account in the same domain.
The account used by SQL Server Agent does not need to be the same account used to

6-2250-7.book Page 21 Tuesday, March 21, 2006 3:45 PM

22 Part I: Getting Started with Reporting Services

connect to Reporting Services databases. Because schedules are created as SQL Server
Agent jobs using the Report Server’s domain account, SQL Server Agent needs permis-
sions to access scheduled jobs owned by a domain account.

In this procedure, you’ll add a service account that will be used for running the ReportServer
service and for connecting to the Reporting Services databases.

Add a service account for Reporting Services

1. Open the Computer Management console.

2. Expand the Local Users And Groups node.

3. Right-click the Users folder and select New User.

4. Enter a user name: ReportServer2005.

5. Add a description: Account used for running the SQL Server Reporting Services service.

6. Provide a strong password.

7. Clear the User Must Change Password At Next Logon check box.

8. Select User Cannot Change Password.

9. Select Password Never Expires.

The New User dialog box looks like this:

10. Click Create.

11. Click Close, and then close the Computer Management console.

6-2250-7.book Page 22 Tuesday, March 21, 2006 3:45 PM

Chapter 2: Installing Reporting Services 23

Installing Reporting Services
You have the option to install Reporting Services using a setup wizard or by running a command-
line executable. Setup can be launched from a CD, a local folder, or a file share that is specified
using Universal Naming Convention (UNC) format. If you use the wizard, you select options
on each page of the wizard to set property values for the installation. If you use the command-
line executable, you can use command-line arguments or a template file to set property values.
You must perform the installation locally, although you can choose which components to
install if you’re distributing components across several computers.

When using the setup wizard to install Reporting Services, you progress through a series of
pages that are dependent on features you selected to install. If you install all components,
you’ll need to specify credentials for the ReportServer Windows service. When the setup wiz-
ard has finished with the installation, you’ll need to use the Reporting Services Configuration
Manager to complete the installation.

Launching Setup

The setup wizard steps you through the process of selecting components, providing creden-
tials, and specifying other configuration settings needed to complete the Reporting Services
installation. The pages of the wizard you see depend on the features that you choose to install.

Important If you plan to install Reporting Services on a Web server that is hosting Windows
SharePoint Services, you’ll need to perform several tasks after you install Reporting Services.
These tasks include configuring SharePoint to avoid conflicts with Reporting Services, adding
the session state module to SharePoint, and separating the application pools of each server
in IIS. You can find detailed instructions at http://msdn2.microsoft.com/en-us/library
/ms159697.aspx.

In this procedure, you’ll launch the Reporting Services setup wizard.

Launch the setup wizard

1. Run Setup from the installation CD or a network share that contains the contents of the
installation CD.

When you run Setup, the first page that appears is the End User License Agreement.

2. After reviewing the agreement, select the I Accept The Licensing Terms And Conditions
check box, and then click Next.

3. Review the required components on the Installing Prerequisites page, and then click
Install.

6-2250-7.book Page 23 Tuesday, March 21, 2006 3:45 PM

24 Part I: Getting Started with Reporting Services

The Installing Prerequisites portion of the installation may take several minutes. Click
Next when installation of prerequisites is completed. On the SQL Server Installation
Welcome page, click Next to start the System Configuration Check.

If the check is successful, then setup will continue. Otherwise, you’ll need to stop and
fix any listed problems. Click Next.

4. On the Registration Information page, type a Name and, optionally, a Company name,
and then click Next.

The Components To Install page is displayed:

Now you’ll need to select the components you want to install.

Choosing the Components

Reporting Services includes several components that are installed on both client and server
computers. These components include the Report Server, the Reporting Services databases,
Report Manager, Report Designer, and several command prompt utilities for administrative
tasks.

In this procedure, you’ll add the Reporting Services Samples to the default selection of com-
ponents to be installed.

Select components to install

1. Click the check box next to Reporting Services, and then click the check box next to
Workstation Components, Books Online And Development Tools.

6-2250-7.book Page 24 Tuesday, March 21, 2006 3:45 PM

Chapter 2: Installing Reporting Services 25

The dialog box now is shown here:

Note This book assumes that you have already installed SQL Server Database
Services, Analysis Services, and Integration Services.

2. Click Advanced, click the plus sign next to Documentation, Samples, And Sample Data-
bases, click the arrow next to Sample Databases, and select Entire Feature Will Be
Installed On Local Hard Drive. Click the arrow next to Sample Code And Applications,
and select Entire Feature Will Be Installed On Local Hard Drive.

Note You can skip this step if you don’t want to use the samples that ship with SQL
Server. You can always use Setup later to install the samples individually if you change
your mind.

6-2250-7.book Page 25 Tuesday, March 21, 2006 3:45 PM

26 Part I: Getting Started with Reporting Services

The Feature Selection page of the setup wizard is shown here:

Notice that you can change the installation directory for some features. If you click a fea-
ture and the Browse button is unavailable, you’re not allowed to change the location.
Also, when you click a feature, the disk space required to install the selected feature is
displayed. Use Disk Cost to see the total space required for all the features you selected
to verify that you have enough space available in the specified installation locations.

3. Click Next.

The Instance Name page of the setup wizard is shown here:

6-2250-7.book Page 26 Tuesday, March 21, 2006 3:45 PM

Chapter 2: Installing Reporting Services 27

Note This book assumes that you use the default instance. If you choose to create a
named instance, you’ll need to change server names and URL references accordingly
when you perform the procedures throughout this book.

4. Click Next.

The Existing Components page will list any components that you selected on the Fea-
ture Selection page. If you didn’t choose any additional features, then this page will not
be shown.

5. Click Next if required.

Selecting the Service Account

The SQL Server Reporting Services Windows service needs to run under a Local System
or domain user account, as explained earlier in this chapter. If you’re installing Reporting
Services on Windows Server 2003, you can also choose to run the service using either the
LocalService or NetworkService account. The options that you can choose from will depend
on the operating system. You can also decide whether you want the service to automatically
start when the server starts.

In this procedure, you’ll assign the ReportServer2005 account as the service account for the
Reporting Services Windows service.

Select a service account

1. On the Service Account page, click Use A Domain User Account.

2. Enter ReportServer2005 as the user name, and then enter the account password that
you created earlier and enter the domain name.

6-2250-7.book Page 27 Tuesday, March 21, 2006 3:45 PM

28 Part I: Getting Started with Reporting Services

Note If you need to change this account or its start options later, you can use the
Services console.

3. Click Next.

The Report Server Installation Options page of the setup wizard is shown here:

4. Click Next. On the Error and Usage Report Settings page, you can choose to send
reports to Microsoft.

5. Click Next, and then click Install.

6. When setup is complete, click Next, and then click Finish. The Setup Progess dialog box
will appear, detailing the progress of each component being installed.

7. Finally, the Completing Microsoft SQL Server 2005 Setup page will appear. Review the
displayed information, and then click Finish.

Using the Reporting Services Configuration Manager

After installation, you must use the Reporting Services Configuration Manager to set proper-
ties for components of Reporting Services to work properly. The first step is to associate the
Report Server with the SQL Server instance hosting the Reporting Services databases.

Start the Reporting Services Configuration Manager

1. Click Start, point to All Programs, point to Microsoft SQL Server 2005, point to Config-
uration Tools, and then click Reporting Services Configuration.

6-2250-7.book Page 28 Tuesday, March 21, 2006 3:45 PM

Chapter 2: Installing Reporting Services 29

2. If you’ve installed Reporting Services to the local server using the default instance, you
can click Connect in the Report Server Installation Instance Selection dialog box. Other-
wise, change the Machine Name or Instance Name as necessary, and then click Connect.

The Server Status page of the Reporting Services Configuration Manager looks like this:

Here you can see that additional configuration is required for the virtual directories used
by Reporting Services, the Web service identity, and the Database Setup. Additionally,
the configuration settings for Email Settings and Execution Account are optional, but
are recommended.

Configuring Virtual Directories

Virtual directories are used to access Report Server and Report Manager. These virtual
directories are created on the Default Web Site in IIS. If your Web Server is dedicated to
Reporting Services, you should redirect the home page to the Report Manager’s home page,
although this is not required. You can also secure data sent to browser or client applica-
tions with SSL encryption, but you must have an SSL certificate installed before starting
the Reporting Services installation.

In this procedure, you’ll specify names for the virtual directories assigned to Report Server
and Report Manager.

Configure virtual directories

1. Click Report Server Virtual Directory in the left frame of the Reporting Services Config-
uration Manager, and then click New in the main frame.

2. Keep the default settings in the Create A New Virtual Directory dialog box.

6-2250-7.book Page 29 Tuesday, March 21, 2006 3:45 PM

30 Part I: Getting Started with Reporting Services

Your screen looks like this:

3. Click OK, click Report Manager Virtual Directory in the left frame, and then click New
in the Create A New Virtual Directory dialog box to accept the default values.

Your screen looks like this:

4. Click Web Service Identity in the left frame, and then click Apply in the main frame.

6-2250-7.book Page 30 Tuesday, March 21, 2006 3:45 PM

Chapter 2: Installing Reporting Services 31

Your screen looks like this:

Specifying the Report Server Database

You need to select a local or remote SQL Server instance that will host the Reporting Services
database. You can use an existing Report Server database or provide a unique name if you
want to create a Report Server database. You also need to specify an account that Reporting
Services will use to connect to this database at run time. The default account is the service
account used to run the ReportServer Windows service, but you can also specify a domain
user account or a SQL Server login to conform to existing security practices for your SQL
Server instance.

In this procedure, you’ll specify the SQL Server instance and the name of the database used by
the Report Server.

Configure the Report Server database

1. Click Database Setup in the left frame, type localhost in the Server Name box, click Con-
nect, and then click OK in the SQL Server Connection Dialog box to confirm the server
and default credentials, Current User – Integrated Security.

2. Click New.

6-2250-7.book Page 31 Tuesday, March 21, 2006 3:45 PM

32 Part I: Getting Started with Reporting Services

Your screen looks like this:

3. Click OK.

Your screen looks like this:

4. Click Apply, and then click OK to confirm the connection.

Specifying Report Delivery Options

If you’ll be using e-mail delivery of subscriptions, you need to specify the name of the e-mail
server that Reporting Services should use to send reports. You can also specify an e-mail account
that will be added as the From address of the e-mail message. Specifying the report delivery
options on this page is not required at this time because you can always edit Reporting Services

6-2250-7.book Page 32 Tuesday, March 21, 2006 3:45 PM

Chapter 2: Installing Reporting Services 33

configuration files later. However, by adding the information now, your Report Server will be
ready for e-mail delivery as soon as installation is complete.

In this procedure, you’ll specify e-mail delivery information for your Reporting Services instal-
lation. (You can skip this procedure if you don’t want to perform the e-mail delivery proce-
dures included in Chapter 14, “Managing Subscriptions.”)

Configure e-mail delivery

1. In the Reporting Services Configuration Manager, click Email Settings in the left frame.

2. Type a Sender Address to be used as the sender for report deliveries: postmaster
@adventure-works.com.

3. Enter an SMTP Server address: localhost.

Note The procedures that you’ll use later in this book to learn about e-mail delivery
assume that you have Simple Mail Transfer Protocol (SMTP) on your local server if you fol-
low this procedure as written. You can alternatively enter the server address of an existing
SMTP server on your network or the SMTP gateway of your Exchange server if you prefer.

4. Click Apply.

Your screen looks like this:

The e-mail address that you enter doesn’t need to be valid. This address becomes the
default reply-to address. When you set up e-mail delivery for a report, you can override
this default.

5. Click Exit.

6-2250-7.book Page 33 Tuesday, March 21, 2006 3:45 PM

34 Part I: Getting Started with Reporting Services

Verifying the Installation

To verify that your installation of Reporting Services was successful, you should perform sev-
eral tests. First, to test the Report Server, you can either check that the ReportServer service is
running by using the Services console, or you can use your browser to navigate to the Report
Server virtual directory, which by default is http://servername/ReportServer. To test Report
Manager, use the application to add a new folder.

In this procedure, you’ll confirm that the Report Server service is running and that Report
Server and Report Manager are working.

Test Report Server and Report Manager

1. From the Administrative Tools program group, open the Services console and scroll to
ReportServer to confirm that the service is running.

The Services console looks similar to this:

2. Open Microsoft Internet Explorer and type the server name and virtual directory name
of Report Manager: http://localhost/Reports.

The Home page of Report Manager is displayed:

3. Click New Folder on the Report Manager toolbar.

The New Folder page is displayed.

4. Type a name for the folder: Adventure Works.

6-2250-7.book Page 34 Tuesday, March 21, 2006 3:45 PM

Chapter 2: Installing Reporting Services 35

Your screen looks like this:

By creating a new folder, you are testing that the Report Manager is able to access the
Report Server, which passes instructions to the ReportServer database.

5. Click OK.

Your screen looks like this:

Your new folder is now ready for reports to be added. You’ll add a report to this folder
when you finish Chapter 3, “Building Your First Report.”

6-2250-7.book Page 35 Tuesday, March 21, 2006 3:45 PM

36 Part I: Getting Started with Reporting Services

Chapter 2 Quick Reference

To Do this

Test features of Reporting Services before making
a purchasing decision

Use the Evaluation edition in a single or multiple server
deployment.

Use Reporting Services in a single server
deployment

Use Standard edition for production and Developer
edition for development and testing.

Use Reporting Services in a multiple server
deployment

Use Enterprise edition for production and Developer
edition for development and testing.

Prepare a server for installation of Report Server
or Report Manager

Install IIS 5.0 or later on each server that will host either of
these Reporting Services components. Additionally,
install .NET Framework 2.0 or later and MDAC 2.6 or
later.

Configure a computer for a Reporting Services
installation

Enable the Distributed Transaction Coordinator service
prior to running Setup.

Configure IIS in preparation for a Reporting
Services installation

Enable the IWAM_computername account. Map the
Default Web Site to (All Unassigned). Optionally, install an
SSL certificate and associate the certificate with the
Default Web Site.

Configure e-mail delivery Install SMTP on the Web Server, or have the name of a
SMTP or POP3 (Post Office Protocol version 3) server
available on your network.

Establish Reporting Services credentials Use the Local System account or a local system admin-
istration account that is a domain user (or LocalService
or NetworkService for the service account, if running
Windows Server 2003) to start the ReportServer
Windows service. Use a service account, domain
account, or SQL Server login for Report Server to use to
connect to the Reporting Services databases.

Install Reporting Services Double-click Setup.exe, found on the installation CD, to
launch the setup wizard.

or

Run the setup command-line executable. Specify options
using command-line arguments or a template file.

6-2250-7.book Page 36 Tuesday, March 21, 2006 3:45 PM

37

Chapter 3

Building Your First Report

After completing this chapter, you will be able to:

■ Use the Report Designer wizards to create a simple tabular report.

■ Publish a report solution.

■ Use Report Manager to manage report properties.

■ Use the HTML Viewer to access and export a report.

In Chapter 1, “Understanding Reporting,” you learned about the three stages of the reporting
life cycle: authoring, managing, and accessing reports. In Chapter 2, “Installing Reporting
Services,” you learned how to install and configure Reporting Services, so you should be ready
to go exploring now. In this chapter, rather than review each component of Reporting Services
in detail, you take a tour of it. You visit each stage of the reporting cycle as you build, manage,
and review your first report, and you also learn about the key components of Reporting Services.

You start your tour by authoring a simple report using wizards in the Report Designer, which will
enable you to set up and design the report. You also use the Report Designer to polish and pub-
lish your report. Then, you move on to the management stage and use Report Manager to update
the report’s description and execution properties. Finally, you wrap up your tour in the access
stage by using Report Manager to explore the report online and to export it as a Microsoft Excel
file. When finished, you wind up with a high-level understanding of the various components of
Reporting Services and the way they work together to create a powerful reporting platform.

Authoring a Report
The process of authoring, or building, a report consists of several steps. The first step is to
define a Reporting Services data source, which packages information about where the data to
be used in your report is stored. To create a data source, you need to know which server hosts
the data and which database or file stores the data, as well as have the credentials with permis-
sion to retrieve that data. Each report that you author must have at least one data source
defined. Data sources are covered in more detail in Chapter 4, “Developing Basic Reports.”

The second step in building a report is to create a dataset for the report. An important compo-
nent of the dataset is a query, which requires that you know the language and syntax used to
retrieve data. For example, if your report will use data from a Microsoft SQL Server database,
you’ll need to be able to create a Transact-SQL query (or know someone who can write it for
you!). A dataset also includes a pointer to the data source and other information that’s used

6-2250-7.book Page 37 Tuesday, March 21, 2006 3:45 PM

38 Part I: Getting Started with Reporting Services

when the query executes. When you use the Report Server Project Wizard, as you will in this
chapter, you can define only one dataset, but you’ll learn how to work with multiple datasets
in a single report in Chapter 7, “Building Advanced Reports.”

The third and final step in the construction of your report is the creation of a report layout,
which is the design template used by Reporting Services to arrange and format the data. The
report layout includes the structure, or data region, into which data is placed when the report
is processed, such as a table or matrix. You can set properties for each section of a data region
to define style properties, such as font, color, and format. Additionally, you can set these prop-
erties for report items, such as the report title in a textbox or the report background, which
gives you enormous flexibility to control the look and feel of your report.

In this chapter, you use the Report Server Project Wizard and the Report Wizard to help you
start and build a new report. You’ll learn another way to begin a report in Chapter 4. These
wizards, which are provided within the Report Designer, are handy tools that walk you
through the three main steps of authoring a report.

Starting a New Report

When you start a new report using the Report Server Project Wizard, you are creating
Microsoft Visual Studio containers to hold your report, a project, and a solution. You must
name these containers and provide a storage location for them on your computer’s hard drive
or on a network file share.

In this procedure, you’ll create a new report project called Adventure Works and specify a stor-
age location for the project.

Start the Report Server Project Wizard

1. Start SQL Server Business Intelligence Development Studio.

Notice the title of the application is Microsoft Visual Studio. SQL Server Business
Intelligence Development Studio is Visual Studio. You are simply using a shortcut
from the Microsoft SQL Server 2005 program group to access Visual Studio.

2. On the File menu, point to New, and then click Project.

The New Project dialog box appears. Templates are organized by Project Type, repre-
sented as folders in this dialog box.

Note If this is your first time working with Visual Studio, you might not be familiar
with the way that items are organized in this environment. A report is placed inside of a
project, which you can think of as a folder that organizes many reports into a collection.
Because you’re using the Report Server Project Wizard, you can work with only one
project right now. However, you’ll be adding reports to this project as you progress
through this book. When you publish all reports in a project, they are automatically
organized into the same folder on the Report Server.

6-2250-7.book Page 38 Tuesday, March 21, 2006 3:45 PM

Chapter 3: Building Your First Report 39

3. Click Report Server Project Wizard.

4. Type a name for the project: Adventure Works.

Notice that as you type, the text in the Solution Name box of the New Project dialog box
changes to match the project name. You have the option of changing the solution name
later if you change your mind.

Note In the same way that a project is a container for a report, a solution is a con-
tainer for one or more projects. Visual Studio lets you work with only one solution at a
time, but you can access any project within the open solution.

5. Type a location for the project: C:\Documents and Settings\<username>\My
Documents\Microsoft Press\rs2005sbs\Workspace.

Important Be sure to replace the placeholder <username> with the name you use to
log into your computer.

The New Project dialog box looks like this:

6. Click OK to continue.

The Welcome page of the Report Wizard is displayed. Note that this wizard is different
from the Report Server Project Wizard. The Report Server Project Wizard lets you create
a solution, a project, and a report in one step, and then launches the Report Wizard. You
can use the Report Wizard any time you want to add a report to an existing project using
a wizard interface. (This is explained in more detail in Chapter 4.)

6-2250-7.book Page 39 Tuesday, March 21, 2006 3:45 PM

40 Part I: Getting Started with Reporting Services

If you want to bypass this page of the Report Wizard in the future, you can select the
check box here to disable the Welcome Page.

7. Click Next.

Connecting to a Data Source

The next step of the Report Wizard allows you to specify connection information. Here you
identify the server and database hosting the data. If necessary, you can also supply credentials
information to be used by Reporting Services for authentication when querying the database.

In this procedure, you’ll create a data source that defines a connection to the rs2005sbsDW
database in your SQL Server using Microsoft Windows authentication.

Select a data source

1. Type a name for the data source: rs2005sbsDW.

2. Select Microsoft SQL Server in the Type drop-down list, if necessary.

The Select The Data Source page of the Report Wizard now looks like this:

You can choose from seven connection types: Microsoft SQL Server, OLE DB, Microsoft
SQL Server Analysis Services, Oracle, Open Database Connectivity (ODBC), XML, or
Report Server Model. Once you select a connection type, you can type a connection
string manually, or you can click Edit to use the Connection Properties dialog box to
generate the connection string automatically. By default, the data source you create here
will be available only to the current report, which allows you to manage its usage sepa-
rately from other reports. You can select the Make This A Shared Data Source check box
at the bottom of the dialog box to allow this data source to be shared with other reports,
which simplifies the management of data sources in general.

6-2250-7.book Page 40 Tuesday, March 21, 2006 3:45 PM

Chapter 3: Building Your First Report 41

3. Click Edit.

The Connection Properties dialog box is displayed. Because you selected Microsoft SQL
Server as the connection type on the Select The Data Source page of the Report Wizard,
the data source defaults to Microsoft SQL Server (SqlClient).

4. Type localhost or the name of the SQL Server instance that you are using in the Server
Name box.

Note This book assumes that you have all Reporting Services components and SQL
Server installed on one computer. In a real-world environment, there are advantages to
using localhost instead of a SQL Server instance since you can easily reuse the data
source when moving from development to production if everything is similarly con-
tained in a single machine. However, if you maintain separate instances of SQL Server,
this strategy will not be useful.

5. Click Use Windows Authentication.

6. Select or enter rs2005sbsDW in the Select Or Enter A Database Name drop-down list.

The Connection Properties dialog box looks like this:

7. Click Test Connection to make sure you can connect to the rs2005sbsDW database, and
then click OK to close the confirmation dialog box.

8. Click OK to close the Connection Properties dialog box.

6-2250-7.book Page 41 Tuesday, March 21, 2006 3:45 PM

42 Part I: Getting Started with Reporting Services

The current page of the Report Wizard looks like this:

Notice the connection string generated for your SQL Server data source: Data Source
=localhost;Initial Catalog=rs2005sbsDW. Remember that you can also type in a con-
nection string for a data source, but it must use the syntax of the database to which
Reporting Services will connect.

Now you have defined a data source that contains the information that Reporting
Services needs to connect to the database it will use to retrieve data for your report. The
data source includes a connection type, a connection string, and the credentials that will
be used when the database is queried.

9. Click Credentials.

The Data Source Credentials dialog box is displayed:

6-2250-7.book Page 42 Tuesday, March 21, 2006 3:45 PM

Chapter 3: Building Your First Report 43

You can click the applicable option to override the authentication method you specified
in the Connection Properties dialog box. Authentication methods include Windows
Authentication, a single user’s credentials, a prompt at run time for the user’s credentials,
or no credentials at all. (You’ll learn more about credential management in Chapter 9,
“Managing Content.”)

10. Click Cancel.

11. Click Next.

Getting Data for the Report

In this next step of the Report Wizard, you design the query that will be displayed in the
report. The query must conform to the relational database syntax you defined in the data
source. You must get this query correct, or you won’t be able to continue with this wizard.

In this procedure, you’ll paste in a query that summarizes the Adventure Works sales for each
employee by year, sales territory group, and sales territory country.

Design a query

1. Start Microsoft Notepad.

2. On the File menu, click Open.

3. Open the Sales Summary.txt file in the C:\Documents and Settings\<username>\My
Documents\Microsoft Press\rs2005sbs\chap03 folder.

4. Copy the following query entirely:

SELECT

 SUM(FactResellerSales.SalesAmount) AS ActualSales,

 DimTime.CalendarYear,

 DimSalesTerritory.SalesTerritoryGroup,

 DimSalesTerritory.SalesTerritoryCountry,

 DimEmployee.FirstName + ' ' + DimEmployee.LastName AS Employee

FROM

 FactResellerSales

 INNER JOIN DimEmployee ON

 FactResellerSales.EmployeeKey = DimEmployee.EmployeeKey

 INNER JOIN DimTime ON

 FactResellerSales.OrderDateKey = DimTime.TimeKey

 INNER JOIN DimSalesTerritory ON

 FactResellerSales.SalesTerritoryKey = DimSalesTerritory.SalesTerritoryKey

AND

 DimEmployee.SalesTerritoryKey = DimSalesTerritory.SalesTerritoryKey

GROUP BY

 DimTime.CalendarYear,

 DimSalesTerritory.SalesTerritoryGroup,

 DimSalesTerritory.SalesTerritoryCountry,

 DimEmployee.FirstName + ' ' + DimEmployee.LastName

6-2250-7.book Page 43 Tuesday, March 21, 2006 3:45 PM

44 Part I: Getting Started with Reporting Services

5. Paste the copied query into the Query String box on the Design The Query page of the
Report Wizard.

Now the current page of the Report Wizard looks like this:

Note Instead of typing or pasting in a query string, you can also click Query Builder to
open the Query Builder to create a SELECT statement using a graphical interface. If
you’ve used the Query Builder in SQL Server 2000 Enterprise Manager or the Query
Designer in Microsoft SQL Server Management Studio for SQL Server 2005, you’ll be in
familiar territory. If you haven’t used either of these applications, you can learn more
about the Query Builder in Chapter 7.

This query will be used to retrieve data from the defined data source for use in your
report. The format of the query depends on the data source you selected. For this pro-
cedure, because you selected a Microsoft SQL Server data source, you use Transact-SQL
to build your query.

The query that you create is just one of several items stored in a dataset. As you learned
earlier in this chapter, a dataset is a container for a pointer to the data source and the
query you design. (You’ll learn more about designing queries to create a dataset in
Chapter 4.) In general, you can type a query directly into the Query String box, use the
Query Builder button to open the Query Builder, or paste in a query that has been tested
first in Query Analyzer or saved in a file.

6. Click Next.

When you click Next, the query is validated against the data source. If there is any prob-
lem, such as an invalid column name, an error message will be displayed in the bottom
section of the Design the Query page. You will not be able to continue past this page of
the wizard until you correct the error.

6-2250-7.book Page 44 Tuesday, March 21, 2006 3:45 PM

Chapter 3: Building Your First Report 45

Structuring Data in the Report

After defining the data source and the dataset, you’re ready to move on to design consider-
ations. Now you select a report type that defines how the data is structured in the report. In
the wizard, you can choose between a tabular or a matrix report type only. You also arrange
the data within the selected structure and finish the design by applying a style template. These
steps make it easy to create a nice-looking report without a lot of effort, but you’ll still have an
opportunity to make adjustments to the layout and style before you publish the report.

In this procedure, you’ll select the tabular report type for your report.

Choose a report type

Click Tabular.

1. The Report Wizard page looks like this:

Notice that the Finish button is now enabled. You have, at this point, created a basic report
that is ready for publishing. Now you can decide how you want to proceed. You could click
Finish and make any desired modifications using the Report Designer. However, to find out
everything you can do with this tool, you’ll continue designing your report with the wizard.

The report type defines the structure, or data region, of the data that is returned by the
query you design. The Report Wizard allows you to present this information as either a
table or a matrix. (You do have more options, but the Report Wizard limits you to these
two data regions, referred to as report types in the wizard.) The main difference between
these two types of data regions is the number of columns. A table has a fixed number of
columns, whereas a matrix has a variable number of columns that is determined by the
query results. You’ll find more information about these and other data regions in Chap-
ter 6, “Organizing Data in Reports.”

2. Click Next.

6-2250-7.book Page 45 Tuesday, March 21, 2006 3:45 PM

46 Part I: Getting Started with Reporting Services

Placing Data in the Report Structure

In this step of the Report Wizard, you arrange the data within the report type that you
selected. This process determines how data is grouped and the order in which it is displayed.
You can think of grouped data as the vertical sections of a report (although groups can be dis-
played next to each other), and the data order as the sequence in which the data is presented
in the same row—vertically for groups and horizontally for columns.

In this procedure, you’ll arrange the five fields produced by the query to build a report that dis-
plays the ActualSales amount for each Employee as detail rows, in groups by SalesTerritoryGroup
and SalesTerritoryCountry, with a page break for each CalendarYear.

Arrange data on the report

1. Click CalendarYear, and then click Page to place the CalendarYear field in the Page sec-
tion of the Displayed Fields list.

The Report Wizard looks like this:

When you place a field in a display section, the corresponding section in the sample
table is highlighted to show you where the field will appear in your report. Each column
of data returned by the query is linked, or mapped, to a report field that is displayed in
the Available Fields list until assigned to a section of the data region. When assigned to
a data region’s section, the report fields appear in the Displayed Fields list. The section
to which you assign the field determines whether you see detail rows, aggregated rows,
or both types of rows in the report. Assignment of fields to data regions and the use of
aggregations are discussed more thoroughly in Chapter 4 and Chapter 5, “Working with
Expressions.”

Because you are using a tabular report type, you can assign fields to the page, group, or
details section of the report. For example, a field assigned to the page section will not be
included in the table in the report, but will instead be placed in a textbox positioned at

6-2250-7.book Page 46 Tuesday, March 21, 2006 3:45 PM

Chapter 3: Building Your First Report 47

the top-left corner of the report. Each distinct value for a page field creates a page break
in the report. Fields added to the group section of the report are used to break the table
into separate sections, which can include subtotals by section.

The table rows are built from the values for the fields assigned to the details section of
the report. There is one table row for each row returned by the defined query. A numeric
field in the details section is summed up into the subtotals if you select the option to
include subtotals. You can decide later whether you want to hide the details in the
report if you prefer to display just summary information.

Note If you choose a matrix report type, the field assignment is slightly different. The
wizard still includes the page and details sections, but the group section is replaced by
sections for columns and rows. You’ll need to assign at least one field to each of these
sections to build a matrix, which is also known as a crosstab. Matrix reports are covered
in Chapter 6.

2. Click SalesTerritoryGroup, and then click Group to place the field in the Group section.
Repeat for SalesTerritoryCountry. Alternatively, you can use the drag-and-drop feature to
move a field from the list of available fields to the appropriate section.

The order in which you add fields to each section determines the sequence in which the
data is displayed in the report. The fields in the Group section will be displayed in order
from top to bottom or from left to right, depending on the style template that you select
in a later step in the wizard. Fields in the Details section will be displayed in columns in
order from left to right.

3. Drag ActualSales to the Details section, which is the bottom section of the Displayed
Fields list, and then drag Employee to the same section.

The Design The Table page of the Report Wizard looks like this:

6-2250-7.book Page 47 Tuesday, March 21, 2006 3:45 PM

48 Part I: Getting Started with Reporting Services

Tip Even after the fields are placed into the Displayed Fields list, you can still rearrange
them to affect their order in the respective sections.

If you had selected the Matrix option on the previous page, Select the Report Type, you
would see the Design the Matrix page here instead of the Design The Table page.

4. Click Employee, and then click the Up button to move Employee above ActualSales. You
can also drag and drop to rearrange fields within a data region.

Now the page looks like this:

5. Click Next.

Applying a Style Template

In this step of the Report Wizard, you make your last design decision for your report. When
you apply a style template, you define the look and feel of the report.

In this procedure, you’ll define a block layout for the table, which includes group subtotals,
and select the Bold style template.

Select a report style

1. Select Block.

Note This page of the wizard will not be displayed if you selected a matrix report type.

6-2250-7.book Page 48 Tuesday, March 21, 2006 3:45 PM

Chapter 3: Building Your First Report 49

Notice that the sample layout changes to give you a preview of the block layout. Here,
you are choosing a layout style for the tabular report that controls the placement of
detail rows relative to aggregated rows on the report. You can also choose to include sub-
totals or enable drilldown. The difference between the layout options will become
clearer when you can actually view your report. At that time, you’ll see examples of the
other layout styles for comparison.

On this page of the Report Wizard, you must select either a stepped or block report lay-
out style. In a stepped layout, each distinct group value is arranged on its own row and
in its own column. The drilldown option (which displays hidden detail data) is available
only for stepped layout. By contrast, the block layout is more compact—you place data in
each column and start a new row only for additional detail rows within the same group
or for a new group value.

2. Select the Include Subtotals check box to include subtotals in your report.

3. Click Next.

4. Click each table style to preview the style in the Choose The Table Style page.

The assignment of a style template to a tabular or matrix report sets the overall color
theme and font usage for the report.

5. Click Bold to set the style for your report.

6. Click Next.

Finishing the Report Wizard

You’re almost finished building your report by using the wizard. You’ve defined where to find
the data, what data to include in the report, and how the data will look in the report. All that
remains is to specify a location on the Report Server that will be the ultimate destination of
your report when it is published and to give your report a name. You also have an opportunity
to review a summary of the selections that you made throughout the wizard and to proceed to
a preview of your report.

In this procedure, you’ll provide the URL for your local Report Server, specify the Adventure
Works folder for deployment, and name your report. When you’re finished with the wizard,
you will be able to preview the report.

6-2250-7.book Page 49 Tuesday, March 21, 2006 3:45 PM

50 Part I: Getting Started with Reporting Services

Set report and project properties

1. Confirm that the current page of the Report Wizard looks like this:

The deployment location is a URL for the Report Server that will host the report as well
as the folder into which the report will be placed on the server. This step of the Report
Wizard simply sets the project properties and does not actually deploy, or publish, the
report to the Report Server. Notice that the default folder has the same name as your
project. If this folder does not already exist, the folder will be created when you deploy
the report. Otherwise, the report will be deployed to the existing folder.

Important The server name will not be validated in this step. If you enter an incorrect
server name, deployment fails. You can update the project properties in the Solution
Explorer if this occurs. You’ll learn how to do this in Chapter 9.

2. Click Next.

3. Type Sales Summary in the Report Name box.

Important If you use the name of a report that has already been deployed to the
Report Server, you will overwrite the published report during deployment of the
report in Visual Studio—but only if you deploy the report to the same folder as the
existing folder. There will be no warning message during deployment that you are
about to overwrite an existing report, so be careful when assigning names and folder
locations to reports.

4. Scroll through the information in the Report Summary box to review your selections.

5. Select the Preview Report check box to preview your report.

6-2250-7.book Page 50 Tuesday, March 21, 2006 3:45 PM

Chapter 3: Building Your First Report 51

The final page of the Report Wizard now looks like this:

At the completion of the Report Wizard, you can immediately preview the report. Some-
times you might prefer to make some additional changes to the report before you display
the preview. If you do not select the Preview Report check box, the Report Designer dis-
plays your report in layout mode. If the report is in layout mode, you can easily switch to
preview mode by clicking the Preview tab in the Report Designer.

Tip An important reason to preview the report is to check the size of the columns. The
columns will all default to the same size and will probably not be wide enough for data.
Also, you might need to adjust formatting for numeric values. You can fix these problems
using the layout mode, and then review the fixes using the preview mode.

6. Click Finish.

Checking the Report Layout

When you finish designing your report, you need to preview it to check the layout and make
some corrections to improve its appearance. You also need to make sure you get the data you
expected and that the data is formatted correctly. When you finish making any necessary cor-
rections, you wrap up this authoring stage of the reporting life cycle by publishing the report
to the Report Server, where it can be accessed by the users.

In this procedure, you’ll explore your report in preview mode so you can see the results of the
selections you made in the Report Wizard.

6-2250-7.book Page 51 Tuesday, March 21, 2006 3:45 PM

52 Part I: Getting Started with Reporting Services

Preview a report

1. If you selected the check box to preview the report on the last page of the Report Wiz-
ard, you will see your report in preview mode. If not, just click the Preview tab in the
Report Designer.

When you display a report in preview mode, the query is executed and the query results
are stored in a dataset and assigned to fields. The report is then rendered according to
the assignment of the fields to data regions that you specified as well as the layout and
style that you selected. At this point, the report format and the report data are merged to
produce the preview that you can see in the Report Designer. In preview mode, you can
interact with the report just as if it were published to the server so you can test the
results before making it available on the Report Server.

Your screen now looks like this:

Take a moment to review the layout of the data in the report. The CalendarYear field is
displayed in the top-left corner. Just below the CalendarYear, you can see the column
names in the table header with the details displayed in rows by groups. The first group
is SalesTerritoryGroup, and the second group is SalesTerritoryCountry. Because these
fields are defined as groups, their values are displayed only in the first row of details
within that group. In the example, you can see actual sales amounts for employees in
Canada which is grouped in North America. The row beneath these details is the group
subtotal for Canada.

Once you’ve closed the wizard, you can’t return to it to make layout changes. Instead,
you must create a new report, which you may find easier to do than making changes to
the layout directly in the Report Designer. If you were to use the wizard to create a

6-2250-7.book Page 52 Tuesday, March 21, 2006 3:45 PM

Chapter 3: Building Your First Report 53

stepped report with subtotals (on the Choose The Table Layout page) using the same
query, then the report would look like this:

Notice that North America is now in its own row, and its subtotal is included on the
same row. Then Canada appears by itself on the next row, followed by the detail rows.
This report style is longer than the block layout.

If you had instead used the wizard to create a report with a stepped layout with drill-
down selected, the report—with North America and Canada expanded to show the
detail rows—would look like this:

With drilldown, the user can click the plus sign to expand the report and click the
minus sign to collapse the report at will. By default, the report is completely collapsed
when it is opened.

6-2250-7.book Page 53 Tuesday, March 21, 2006 3:45 PM

54 Part I: Getting Started with Reporting Services

2. Scroll down to the bottom of the first page. Notice the group subtotal for United States.
Beneath this group subtotal, you can see the group subtotal for SalesTerritoryGroup,
which is the subtotal for Canada and the United States.

3. Click the Next Page button on the Preview toolbar to view the page for 2002.

Since you assigned CalendarYear to the Page data region of the report, each page con-
tains data for a separate year. You can use the page buttons on the Preview toolbar to
navigate between pages, or you can type in the page number that you want to view as
shown here:

4. Scroll to the bottom of the second page to see the layout when there are multiple values
for SalesTerritoryGroup, then scroll back to the top of the page.

5. If you can’t see the full width of the report, scroll horizontally to see the Actual Sales
column.

The top of your report looks like this:

Notice that the text is wrapping in several columns: SalesTerritoryCountry, Employee,
and ActualSales. If you are trying to fit many columns onto a printed page, you may need
to use text wrapping to fit a table within the available horizontal space. However, for
online viewing, you generally have more room available and you can minimize vertical
scrolling for the user if you widen each column to accommodate the maximum expected
string length. In addition, the format of the ActualSales values can be improved.

6-2250-7.book Page 54 Tuesday, March 21, 2006 3:45 PM

Chapter 3: Building Your First Report 55

Correcting Report Layout Issues

Preview mode in Report Designer allows you to see where you need to clean up your report,
but you need to switch to layout mode in order to fix the problems. In layout mode, you can
adjust every property of every element in the report, giving you complete control over every-
thing that you can see. You can easily switch back and forth to test the results of your changes
to the report in layout mode.

In this procedure, you’ll use layout mode to improve the appearance of the report and check
the results by again previewing the report.

Fix column sizes and data formatting in the report layout

1. Click the Layout tab.

The report is displayed in layout mode:

Notice the rulers that appear both above and to the left of the report layout. You can use
these rulers as a visual guide when making changes to the report, such as when resizing
report items or positioning new report items.

2. Click any cell in the table to display the column and row handles.

The table now looks like this:

6-2250-7.book Page 55 Tuesday, March 21, 2006 3:45 PM

56 Part I: Getting Started with Reporting Services

The column handles are the shaded cells that appear above the table, and the row han-
dles are the shaded cells with icons that are shown to the left of the table. You use these
handles to modify the table properties.

3. Position your cursor between the second and third column handles, and then click and
drag to widen the second column, Sales Territory Country, to approximately 1.5 inches.

Now the table looks like this:

You can drag the column only when the cursor is properly positioned and the cursor
changes to a double-headed arrow. Making the column bigger eliminates the text wrap-
ping problem, but it also requires you to have some idea of the maximum length of the
data that could appear in that column.

4. Position the cursor between the third and fourth column handles, and then click and
drag to widen the Employee column to approximately 1.75 inches.

5. Right-click the fourth column handle, above Actual Sales, to select the entire column,
and then click Properties.

The Properties window for the selected column, named TableColumn4, is displayed in
Visual Studio:

6-2250-7.book Page 56 Tuesday, March 21, 2006 3:45 PM

Chapter 3: Building Your First Report 57

6. Scroll through the Properties window, if necessary, to find the Format property, and
then type C0 in the Format property field to format the field as currency with no decimal
places.

Note Use .NET formatting strings to control the data display. You can find more infor-
mation about formatting numeric strings online at http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/cpguide/html/cpconstandardnumericformatstrings.asp.
Information about formatting date strings is located at http://msdn.microsoft.com
/library/default.asp?url=/library/en-us/cpguide/html/cpconDateTimeFormatStrings.asp.

Scroll to the bottom of the Properties window to find the Width property, and then type
1.25in to resize this column.

You can provide a specific measurement for the Width property when you require more
granular control over the size of a column.

Click the Preview tab to preview the modified report.

The newly formatted report is displayed:

The text wrapping problem is solved, and the format of the Actual Sales column is
improved. Your first report is ready for publishing!

Publishing a Report

Now you’ll wrap up the authoring stage of the reporting life cycle by publishing the report to
the Report Server, where it can be accessed by the user community.

In this procedure, you’ll deploy a report solution that enables you to publish your report to
your local Report Server.

6-2250-7.book Page 57 Tuesday, March 21, 2006 3:45 PM

58 Part I: Getting Started with Reporting Services

Deploy a report solution

1. On the File menu, click Save All.

2. In the Solution Explorer window, right-click the Adventure Works project at the top of
the tree, and then click Properties.

The Adventure Works Property Pages dialog box is displayed. You can see the Target
ReportFolder and TargetServerURL properties for which values were provided on the
Choose The Deployment Location page of the Report Wizard.

3. Click Configuration Manager.

4. Verify that the Deploy check box is selected.

The Configuration Manager dialog box looks like this:

5. Click Close, and then click OK.

6. On the Build menu, click Deploy Adventure Works.

The Output window displays the progress of deployment. Deployment of the solution is
complete when you see messages in the Output window announcing that the build and
deploy operations succeeded:

Instead of deploying an entire solution, you also have the option to deploy a single
report or multiple reports within a project or solution. A report is published by using
one of these deployment options to transfer it from Visual Studio to the Report Server.
You can alternatively publish a report programmatically using a script or manually using
the Web application called Report Manager, which you’ll learn about in Chapter 9.

6-2250-7.book Page 58 Tuesday, March 21, 2006 3:45 PM

Chapter 3: Building Your First Report 59

Managing a Report
You can manage published reports by using Report Manager, which is supplied by Reporting
Services. Management of reports includes such activities as setting report properties and exe-
cution properties, managing content in folders, and applying security on the Report Server to
control how users access and interact with reports. You perform only a few management tasks
in this chapter. (You’ll learn about all the management tasks in Part III, “Managing the Report
Server.”)

Reviewing Report Properties

Each report has a set of properties pages that you must manage. You need to know how to use
the Report Manager to find these properties and to review the types of properties you can
manage.

In this procedure, you’ll navigate from the Home page of Report Manager to the Properties
page of your report.

Open the report’s Properties page

1. Open Internet Explorer.

2. Type the URL http://localhost/Reports to open the Report Manager.

The Home page of Report Manager is displayed:

3. Click the Adventure Works folder link.

6-2250-7.book Page 59 Tuesday, March 21, 2006 3:45 PM

60 Part I: Getting Started with Reporting Services

The folder contents are displayed:

Notice that this page has a Properties tab in addition to the Contents tab. (You’ll learn
more about managing folder properties in Chapter 9.) Currently, the Adventure Works
folder contains only one report, the Sales Summary report that you just published.

4. Click the Sales Summary link.

Reporting Services generates and displays the Sales Summary report:

6-2250-7.book Page 60 Tuesday, March 21, 2006 3:45 PM

Chapter 3: Building Your First Report 61

The View tab is displayed by default when you open a report. Three other tabs are avail-
able for this report: Properties, History, and Subscriptions. In this section, you review
the Properties page. Later, in Chapter 7, you’ll learn more about the other tabs.

Tip You don’t have to wait for the report to be displayed before clicking another tab.

5. Click the Properties tab.

The Properties page for the Sales Summary report is displayed:

On this page, you can see the author and also the date the report was created. The mod-
ification author and date of modification match creation information until the report is
subsequently modified. Notice that you can change the name of the report on this page
and add a description. The other tasks that you can perform on this page are covered
later in Chapter 9.

Notice the links in the left frame of the browser window. The many types of report prop-
erties are logically organized into separate pages, where you can apply changes to cur-
rent settings. Properties determine, for example, how the report appears in Report
Manager, how users can interact with the report, and how the Report Server connects to
the data sources. You’ll review report properties in greater detail in Chapter 9.

6-2250-7.book Page 61 Tuesday, March 21, 2006 3:45 PM

62 Part I: Getting Started with Reporting Services

Changing Report Properties

Often, you will want to add a description so a user knows what your report contains before
opening it. This property is accessible on the main properties page of the report.

In this procedure, you’ll add a description and observe how a description is displayed on the
Contents page of a folder.

Add a description

1. In the Description box, type Actual sales by year, territory, and salesperson.

Your screen looks like this:

This report description is displayed on the Contents page and, importantly, is visible
only to users who have been granted permission to view the report.

2. Click Apply.

Clicking Apply doesn’t appear to change anything. However, the report description is
now visible on the Contents page of the Adventure Works folder.

3. Click the Adventure Works folder link at the top-left corner of the browser window.

6-2250-7.book Page 62 Tuesday, March 21, 2006 3:45 PM

Chapter 3: Building Your First Report 63

Your screen looks like this:

Notice how the report description is displayed below the report name.

Reviewing Execution Properties

Execution properties are a subset of the report properties maintained for each report. When
you understand the implications of the execution property settings, you can choose the most
appropriate property setting for your reporting environment. Execution properties allow you
to manage reports by balancing system resources and performance with the users’ informa-
tion requirements. For example, you set up caching to achieve a reasonable balance when data
used in the report is not changing rapidly at the source. To use caching, you first need to
change the data sources properties so you can assign logon credentials that will be used to
execute the report for the cache. Separate logon credentials are required by Reporting Services
to implement report caching in order to make a single report available to many users.

In this procedure, you’ll open the Execution Properties page for your report to review the
available options.

Open the report’s Execution Properties page

1. Click the Sales Summary link.

Assume for a moment that you’ve just started a new browser session. Just like the previ-
ous time you opened this report, a message is displayed to let you know that several
activities are occurring: “Report is being generated”. Each time a report executes on
demand, as you initiated in this step, a query is executed to retrieve data from the

6-2250-7.book Page 63 Tuesday, March 21, 2006 3:45 PM

64 Part I: Getting Started with Reporting Services

rs2005sbsDW database. The data is processed with the report, which is then rendered
into the HTML display in your browser window.

2. Click the Properties tab.

3. Click the Execution link in the left frame of the page.

The Execution Properties page is displayed:

Notice that you can render the report either on demand or on a scheduled basis. When
rendered on demand, the report typically displays the most recent data and may or may
not use caching. By default, a report renders on demand without caching. When ren-
dered on a scheduled basis, the report is stored as an execution snapshot, which cap-
tures data for the report at a point in time.

Execution properties control when report processing occurs. When a report executes on
demand, which occurs every time another user opens the report, the defined query runs
and the query results are merged with the report definition to produce the HTML out-
put format. You can alternatively set the execution properties to process the report at a
scheduled time so the report is ready when accessed. However, if you choose to do this,
let users know that the data in the report is not current. Another option is to cache a
report temporarily to make the same output available to several users for the duration of
a specified timeframe. The key difference between a snapshot and a cached report is that
the snapshot is stored permanently until physically deleted, while the cache is stored
temporarily with a predetermined expiration. The options for specifying execution
properties are covered in Chapter 9.

6-2250-7.book Page 64 Tuesday, March 21, 2006 3:45 PM

Chapter 3: Building Your First Report 65

Changing Data Sources Properties

Data sources properties define the connection to be used for query execution. You can change
these properties to override the credentials used for authentication when the report executes.
Queries that run unattended, such as when a report is cached or scheduled for execution,
require stored credentials. These credentials are encrypted when stored in the ReportServer
database. (You’ll learn more about using secured credentials in Chapter 9.) To set up a cache
for your report, you need to change the credentials information in the data sources properties.

Use secured credentials

1. Click the Data Sources link in the left frame of the page.

2. Click the Credentials Stored Securely In The Report Server option.

3. Type ReportExecution as the user name.

This SQL Server login was added when you installed the sample databases.

4. Type ReportExecution as the password.

Important In a production environment in which you are using stored credentials, it’s
important to test the report by viewing it to ensure that you have entered the user name
and password correctly. The credentials will not be validated until the report executes.

Your screen now looks like this:

5. Click Apply.

6-2250-7.book Page 65 Tuesday, March 21, 2006 3:45 PM

66 Part I: Getting Started with Reporting Services

Changing Execution Properties

You might want to temporarily cache a report to improve performance. When a user first
opens the report, a copy of the report is placed in temporary storage and made available to
other users who open the same report. You can also assign a time limit for the cache so that
the report can be periodically refreshed with more current data.

Note The type of caching discussed in this chapter refers to the access of a single report by
multiple users. When you open a report, the report is automatically cached for you as part of
your browser session. You can then return to this report repeatedly during the same session
without having to wait for the query to execute again, regardless of the current setting of the
report’s execution properties. When you close the browser window, the report is removed from
this cache. You’ll learn more about session caching in Chapter 9.

In this procedure, you’ll change the report execution properties to cache your report, and set
the cache to expire after 60 minutes.

Define a report cache

1. Click the Execution link.

2. Click the Cache A Temporary Copy Of The Report. Expire Copy Of Report After A Num-
ber Of Minutes option to cache the report and expire after a specified number of min-
utes. Change the number of minutes to 60.

Your screen looks like this:

6-2250-7.book Page 66 Tuesday, March 21, 2006 3:45 PM

Chapter 3: Building Your First Report 67

3. Click Apply at the bottom of the page.

The next time this report is opened, a temporary copy of it will be placed in the cache to
speed up its display for any later requests by other users within the same hour. At the
end of 60 minutes, the temporary copy is removed from the cache. A new copy is only
placed in the cache when a user requests the report again.

As mentioned earlier, by using the caching option, you can improve performance for
the next user who opens the same report. Any subsequent request for a report results
in the display of the cached copy of the report rather than in the execution of the
query and processing of the report. That is, any subsequent request displays the
cached report until the cache expires. The purpose of expiring the cache on a periodic
basis is to force the report to be refreshed with the most current data when the next
user accesses the report. The result is a new cached instance of the report until the
next scheduled expiration.

Tip The caching feature is useful when you have a query that takes a few minutes or
more to execute and many people want to see the same report. It minimizes the
demand for resources on the database server, reduces the level of network traffic asso-
ciated with transporting the data from the database server to the Report Server, and
speeds up the display of reports when requested. For more details about report cach-
ing, refer to Chapter 9.

Accessing a Report
Each published report has its own URL on the Report Server. Instead of using the Report
Manager to navigate through folders to find a report, you can enter the report’s URL address
into your browser. You can also use this URL in a hyperlink that you add to a custom HTML
page. (In fact, you could even include additional characters in the URL to control the behavior
of the report, such as formatting the report with a different rendering extension, but you’ll
learn how to do that in Chapter 18, “Building Custom Reporting Tools.”) For now, it’s easiest
to use the Report Manager to find and view a report online and to export the report to another
format.

Displaying a Report

Now that you successfully authored and managed your report, you are ready for the access
stage of the reporting life cycle. When you access a report online, you can use a toolbar in the
viewer to help you explore your report. After opening the report, you can navigate through its
pages or search for specific text so you can jump forward in it.

In this procedure, you’ll explore each page of your report.

6-2250-7.book Page 67 Tuesday, March 21, 2006 3:45 PM

68 Part I: Getting Started with Reporting Services

View report pages

1. Click the View tab.

The first page of the report, for calendar year 2001, is displayed. This presentation of the
report is nearly identical to the version you saw in the Report Designer. You now have
the HTML viewer that includes a report toolbar to help you explore and interact with
the report. For example, you can use controls in the toolbar to page through the report,
to search for a string in the report, or to export the report to another format. The HTML
Viewer is covered in more detail in Chapter 12, “Accessing Reports.”

2. Click the Next Page button on the View toolbar to view the sales data for each year.

Searching a Report

Sometimes the information you’re looking for can be difficult to find in a lengthy or multipage
report. The HTML Viewer provides a feature to help you find a text string anywhere in the
report, from your current position to the end of the report.

In this procedure, you’ll use the search feature to locate specific text in the report.

Find text in a report

1. In the Find text box, located in the center of the View toolbar, type Linda. Click the Find
link.

Your screen looks like this:

The Find link is not enabled until you type a string into the associated search box. When
you click this link, the report scrolls to the first occurrence of this string in the report.

6-2250-7.book Page 68 Tuesday, March 21, 2006 3:45 PM

Chapter 3: Building Your First Report 69

2. Use the Next link to find the next occurrence of the string.

The search operation begins in the currently selected page or section and continues
across each page of the report until the end of the report is reached.

Tip You don’t need to worry about using the correct case, because the search opera-
tion is not case-sensitive. However, you are limited to a string length of 256 characters.

Exporting a Report

The HTML format is not the only format you can use to view your report. You can also export
the report to another format that allows you to create a file that you can open immediately or
save to your computer. The View toolbar includes a drop-down list from which you can
choose an export format. (Reporting Services includes several export formats, also referred to
as rendering formats, which you’ll review more closely in Chapter 13, “Rendering Reports.”)
This feature gives you the flexibility to produce several versions of your report from a single
platform.

In this procedure, you’ll complete your tour of Reporting Services by exporting your report to
an Excel format, opening the generated Excel workbook, and examining each sheet in the
workbook, comparing them with the rendering of your report as HTML.

Export to Excel

1. Click Excel in the drop-down list at the far right of the View toolbar.

Your screen now looks like this:

6-2250-7.book Page 69 Tuesday, March 21, 2006 3:45 PM

70 Part I: Getting Started with Reporting Services

As mentioned earlier, the Export feature of the HTML view gives you the ability to view
the report in a different format. When you export the report, if a viewer is available for
the selected format, a new browser window opens. For example, to export to the Excel
format, you must have Microsoft Excel installed on your computer.

2. Click the Export link.

A new browser window opens and the File Download dialog box is displayed:

You can open the file to view it now, or you can save the file to view it later.

3. Click Open.

The Report Server renders the report as an Excel file that downloads to your computer.
Microsoft Excel opens, and the report is displayed:

6-2250-7.book Page 70 Tuesday, March 21, 2006 3:45 PM

Chapter 3: Building Your First Report 71

Notice that the report style in Reporting Services is closely reproduced in the Excel ver-
sion of the report. Much of the color style, font style, and layout that you see in the
HTML version of the report also appears in the Excel version. Each page has been
placed on a separate worksheet in the Excel workbook.

4. Click each worksheet tab to review the sales data for each year.

With the report in this format, you can take advantage of all of Excel’s features to inter-
act with the report data and perform additional analysis that was not possible using the
static report in the browser.

Chapter 3 Quick Reference

To Do this

Start the Report Server Project
Wizard

Start a new project in Visual Studio (SQL Server Business Intelligence
Development Studio) and select Report Server Project Wizard from the
Business Intelligence Projects folder. You must provide a name for the
project and solution and designate a folder location for the solution.

Add a data source using the Report
Wizard

On the Select The Data Source page, enter a name for the data source;
select a connection type; and enter a connection string, or use the Edit
button to access the Connection Properties dialog box to generate the
connection string automatically. For example:

Data Source=localhost;Initial Catalog=rs2005sbsDW

Add a query string using the
Report Wizard

On the Design The Query page, enter or paste in a query string, or click
the Query Builder button to open the Query Builder.

Select a report type using the
Report Wizard

On the Select The Report Type page, click either the Tabular or Matrix
option.

Arrange the data using the
Report Wizard

On the Design The Table page, assign fields to the Page, Group, and
Details sections.

In the Design The Matrix page, assign fields to the Page, Columns,
Rows, and Details sections.

Select a table layout using the
Report Wizard

On the Choose The Table Layout page, select Block or Stepped, or op-
tionally include subtotals. If you choose the stepped layout, you can en-
able drilldown.

Apply a style template using
the Report Wizard

On the Choose The Table Style page or the Choose The Matrix Style
page, click a style name.

Assign a deployment location
and a report name using the
Report Wizard

On the Choose The Deployment Location page, enter the URL for the
Report Server to host the report. For example:
http://localhost/ReportServer

Optionally, enter a folder name. The folder will be created on deploy-
ment if it does not already exist.

The final page of the Report Wizard requires a report name.

Preview a report In Visual Studio, click the Preview tab.

6-2250-7.book Page 71 Tuesday, March 21, 2006 3:45 PM

72 Part I: Getting Started with Reporting Services

Adjust the size of a column in
a table

In Visual Studio, click the table to display the column and row handles,
and then drag the column handle to the left to make the column small-
er or to the right to make it larger. Alternatively, set the Width property
for the selected column.

Publish a report solution On the Build menu of Visual Studio, click Deploy projectname.

Open Report Manager Enter the URL in your browser. For example:

http://localhost/Reports.

View a report In Report Manager, navigate the folder hierarchy to the report, and
then click the report link.

Manage report properties With the report open in Report Manager, click the Properties tab. Use
the applicable link in the left frame to access the set of properties to be
managed. Set a property by clicking an option or selecting a check box,
and then clicking the Apply button.

Export a report With the report open in Report Manager, select the export format from
the list box and click the Export link.

To Do this

6-2250-7.book Page 72 Tuesday, March 21, 2006 3:45 PM

Part II
Authoring Reports

In this part:

Chapter 4: Developing Basic Reports. .75

Chapter 5: Working with Expressions .113

Chapter 6: Organizing Data in Reports .137

Chapter 7: Building Advanced Reports .161

Chapter 8: Building Report Models .199

In Part I, “Getting Started with Reporting Services,” you learned how the activities of enter-
prise reporting are fully supported by the Reporting Services platform. You also explored
the reporting life cycle by using Reporting Services to author, manage, and access a simple
report. In the five chapters of Part II, you focus on the authoring stage of the reporting life
cycle by developing a variety of reports that use the range of features provided by the
report design environment. In Part III, “Managing the Report Server,” you’ll learn how to
manage the reports you create.

6-2250-7.book Page 73 Tuesday, March 21, 2006 3:45 PM

6-2250-7.book Page 74 Tuesday, March 21, 2006 3:45 PM

75

Chapter 4

Developing Basic Reports

After completing this chapter, you will be able to:

■ Add a new report to a project.

■ Define data for a report.

■ Add a table to a report.

■ Add sorting to a table.

■ Group data in a table.

■ Add items to a report.

■ Edit properties of report items.

This chapter shows you how to use the Report Designer in Microsoft Visual Studio so you can
prepare, structure, and format a tabular report. This chapter begins by explaining the output
of the authoring stage—a report definition file.

Understanding a Report Definition File
Reporting Services generates a report by using a report definition, which describes the report’s
data, layout, and properties. Rather than build a report using a programming language to cre-
ate a series of instructions, you can use Reporting Services to define exactly how you want the
report to look. Using a definition, as contrasted with a series of instructions, is known as a
declarative model. Regardless of the language later used to generate the report from this defini-
tion, the result is the same and can be produced in many different formats.

The declarative model used by Reporting Services is constructed as a collection of XML ele-
ments that conform to a specific XML schema definition known as Report Definition Language
(RDL). RDL is an open schema that can be extended by third parties, such as application
developers and commercial software companies, to support specialized features. Microsoft
developed RDL to promote the exchange of report definitions between report producers and
report consumers.

A report producer is an application that is used to create a report definition. This application
typically has a graphical user interface (GUI), which allows the report developer to create a
report definition without writing any code. A developer could also build a custom application
to generate a report definition completely from code—ultimately, it’s the report definition that
matters, not the means by which it is produced.

6-2250-7.book Page 75 Tuesday, March 21, 2006 3:45 PM

76 Part II: Authoring Reports

A report definition is transformed into the desired output format by an application known as
a report consumer. The report consumer’s job is to use the query embedded in the RDL to get
data for the report and to merge the results with the set of instructions that define the report’s
layout and properties. Most commercial reporting applications produce reports in a propri-
etary format that can be used only within the vendor’s report execution environment. By sep-
arating production and consumption, reports can be ported easily from one vendor’s
reporting platform to another, such as Reporting Services.

Preparing a Report Using Report Designer
In Chapter 3, “Building Your First Report,” you built a simple report by using some of the fea-
tures of Report Designer. As you recall, Report Designer is integrated with Visual Studio.
Because Report Designer generates a report definition, it is therefore a report producer. The
integration of Report Designer into Visual Studio allows you to take advantage of a fully fea-
tured programming environment to develop many types of reports, from the most basic
reports to quite complex ones. Many people find Report Designer easier to use than Microsoft
Access to build reports. As you work in Visual Studio, the Report Designer automatically con-
verts your report layout into RDL.

Even if you don’t know any programming languages or XML, the Report Designer is easy
enough to use to create attractive and information-rich reports. If, however, you’re already an
experienced programmer, you’ll find that Report Designer has all the tools you need to extend
the capabilities of your reports. You’ll learn how to add custom development to your reports
in Chapter 16, “Report Authoring with Custom Development.”

In this section, you use the Report Designer to prepare a report by creating a report project
and adding a report to this new project. You then add a data source to the project to define the
connection information that Reporting Services will use to get data for the report. To finish
preparing the report, you create a dataset to define the data that will be displayed in the report.

Creating a New Report Project

In Chapter 3, you learned how to create a new project using the Report Server Project Wizard.
Here, you’ll use the Report Server Project template to create a project to contain your report.

In this procedure, you’ll add a new project, My Adventure Works, not by using the wizard, but
by using the Report Server Project template.

Use the Report Server Project template

1. If necessary, start SQL Server Business Intelligence Development Studio.

2. On the File menu, point to New, and then click Project.

6-2250-7.book Page 76 Tuesday, March 21, 2006 3:45 PM

Chapter 4: Developing Basic Reports 77

3. In the New Project dialog box, click the Report Server Project template in the Business
Intelligence Projects folder.

4. Type in a name for the project: My Adventure Works.

5. If necessary, type the following location for the project: C:\Documents and Settings
\<username>\My Documents\Microsoft Press\rs2005sbs\Workspace, and then
click OK.

Creating a New Report

Now you’re ready to add a report to your project. You still have the option to use the Report
Wizard to help you set up a new report. However, in this section, you’ll create a blank report
without using the wizard. As you progress through this chapter, you’ll add items to this report.

In this procedure, you’ll add a new item to your project using the Report template.

Add a new item to a project

1. In Solution Explorer, right-click the Reports folder, point to Add, and then click New
Item.

Note Notice that Add New Report is an available option. If you click Add New Report,
the Report Wizard that you learned how to use in Chapter 3 is launched.

2. In the Add New Item dialog box, click the Report template.

Notice that you can launch the Report Wizard from this dialog box as well.

3. Type a report name: Product Profitability.rdl.

Important You must include the .rdl extension in the name of the report to ensure
that Report Designer interacts properly with the report definition file.

4. Click Add.

6-2250-7.book Page 77 Tuesday, March 21, 2006 3:45 PM

78 Part II: Authoring Reports

Your screen looks like this:

The My Adventure Works project now contains the new report. The Document window
displays the report in the Data view.

Connecting to a Data Source

You already learned in Chapter 3 that a data source must include location information for the
data that will be used in the report. At minimum, the data source includes the server, database
name, and user credentials for authentication. The specific information contained by the data
source depends on the type of database in which the data is stored.

A data source can be report-specific or shared. In Chapter 3, you created a report-specific data
source that cannot be used in other reports in the project. Now you’ll learn how to create a
shared data source that can be used by several reports. By using a shared data source, you can
more easily manage changes when the location of data or authentication information
changes—you need to update only the shared data source instead of update each report that
uses a report-specific data source.

In this procedure, you’ll create a shared data source to define the connection to the
rs2005sbsDW database in your SQL Server using Windows authentication.

Add a shared data source

1. In Solution Explorer, right-click the Shared Data Sources folder, and then click Add New
Data Source.

6-2250-7.book Page 78 Tuesday, March 21, 2006 3:45 PM

Chapter 4: Developing Basic Reports 79

2. Change the name of this data source from DataSource1 to rs2005sbsDW.

3. Click Edit.

The Connection Properties dialog box is displayed. By default, the data provider is
Microsoft SQL Server (SqlClient). Reporting Services can work with any OLE DB .NET
data provider; you simply click Change and select the appropriate provider.

4. In the Connection Properties dialog box, type the server name: localhost.

5. Click Use Windows Authentication.

6. In the Select Or Enter A Database Name drop-down list, select rs2005sbsDW.

7. Click OK to return to the Shared Data Source dialog box.

8. Click OK to complete the creation of the shared data source.

The Solution Explorer window looks like this:

The Shared Data Sources folder now contains a shared data source item,
rs2005sbsDW.rds.

Working with Datasets

A report definition can include one or more datasets. Each dataset is essentially a query used
to gather data for the report, but it also contains a pointer to the data source and other infor-
mation about the data, such as collation and case sensitivity. (If you’re unfamiliar with these
terms, you should ask your database administrator what settings are appropriate for the data
source you’re using to build your report.) Each column from the dataset query becomes a field
that can be used in the report. In Chapter 3, you used the Report Wizard to add a single
dataset to your report. (You’ll learn how to use multiple datasets in Chapter 7, “Building
Advanced Reports.”) In this section, you’ll work with just a single dataset in your report, but
you’ll create it without the help of the wizard.

In this procedure, you’ll enter a SQL query that returns data from a view that summarizes
costs, sales amounts, and order quantities by product, product subcategory, and product cat-
egory in January 2003.

6-2250-7.book Page 79 Tuesday, March 21, 2006 3:45 PM

80 Part II: Authoring Reports

Add a dataset

1. On Dataset toolbar, select <New Dataset…> from the drop-down list, as shown here:

The Dataset dialog box is displayed:

Notice that the data source defaults to the shared data source you created earlier, labeled
rs2005sbsDW. You can also create a new private data source for the report by selecting
New Data Source in the Data Source drop-down list.

2. Replace the name of the dataset with DataDetail.

Important The name of the dataset cannot contain a space.

3. Type the following SQL statement to define a query string for the dataset:

select * from vProductProfitability

where Year = 2003 and

MonthNumberOfYear = 1

This query uses a view in the rs2005sbsDW database, which was prepared specifically
to provide data for reporting.

6-2250-7.book Page 80 Tuesday, March 21, 2006 3:45 PM

Chapter 4: Developing Basic Reports 81

Tip It’s a good idea to use a view rather than a table when extracting data for report-
ing purposes. If business rules change for the reports, you can make the necessary
updates to the view rather than modify each report using the modified table—avoiding
a maintenance nightmare. Another way to manage future changes to the report is to use
a stored procedure, which you’ll learn how to do in Chapter 7.

4. Click OK.

5. Click Run on the Dataset toolbar to test the query and see the result set.

The Run button is represented as an exclamation point in the Dataset toolbar. You might
need to resize the Document window to view the entire toolbar.

The Document window now looks like this:

The Data view page shows the dataset in the Generic Query Designer layout. The query
is displayed in the top section of the page, and the query results are shown in a grid in
the bottom section. The query results are not stored with the report definition, but they
are displayed here to help you validate that you are retrieving the expected data.

Each column in the grid becomes a field available for use in the report. These fields do
not change over time unless you change the query in the dataset. Of course, as the data
changes in the source database, the rows that appear in this grid, and eventually in the
report, change when the query is executed.

6-2250-7.book Page 81 Tuesday, March 21, 2006 3:45 PM

82 Part II: Authoring Reports

6. Click the Generic Query Designer button (to the left of the Run button) to toggle the
Query Builder on.

You can use the Query Builder to help you create a query using a graphical interface
rather than simply typing a completed query, as you did in this procedure. You’ll learn
how to use the Query Builder in Chapter 7.

7. On the File menu, click Save All.

Structuring a Report Using Report Designer
Once you complete the preparatory steps to define a data source and to create a dataset, you
are ready to work on the structure of your report. As you learned in Chapter 3, a data region
is a report structure that contains the data. You’ll learn how to use the matrix, list, chart, rect-
angle, and subreport data regions in Chapter 6, “Organizing Data in Reports.” In this chapter,
you work only with the table data region. You start by placing the table in the report body.
Then you add fields to the table, add interactive sorting to allow the user to change the sort
direction of data in the table, and define groups to organize the data into logical sections.

Adding Items from the Toolbox

The Toolbox window contains all the report items available. Report items can be data regions,
graphical elements, and free-standing text. You can choose from six data regions: table,
matrix, rectangle, list, subreport, and chart. Graphical elements you can add include a line and
an image. You can add one or more of these report items to your report. You can even add mul-
tiple data regions, which you’ll learn how to do in Chapter 6. You’ll learn how to add the other
types of report items later in this chapter.

In this procedure, you’ll add a table to the design grid.

Add a table

1. Click the Layout tab.

2. In the Visual Studio Window on the left side of your screen, hover the pointer over the
Hammer and Wrench icon to open the Toolbox window.

If the Toolbox window is not visible and the Hammer and Wrench icon is not in the
toolbar, click Toolbox on the View menu to show it.

3. In the Toolbox window, click Table.

4. Point to the intersection of the top row and first column of grid lines in the body of the
report, and then click to add a table.

6-2250-7.book Page 82 Tuesday, March 21, 2006 3:45 PM

Chapter 4: Developing Basic Reports 83

If you are using the Visual Studio default layout for Windows, your screen looks like this:

You’ll learn how to place the other items in the design grid later in this chapter and in
Chapter 6.

Tip You can also drag an item from the Toolbox window and drop it on the design grid
in the desired location.

Notice that the initial layout of the table has three columns and three rows. Each row
handle—the shaded area on the left border of the table—has a unique icon to represent
the row type. The first row is a table header, the second row is a detail row, and the third
row is a table footer. The detail row repeats for each row in the dataset. The header and
footer rows each appear only once in the table.

Working with Table Rows

A table is a collection of cells. Each cell of the table is initially filled with a textbox. A textbox
can contain either static text or a formula. The formula can refer simply to a field from a
dataset, or it can include more complex calculations.

In this procedure, you’ll add fields to each row of the table.

Add fields to a table

1. From the View menu, select Datasets to display the Datasets window if necessary.

6-2250-7.book Page 83 Tuesday, March 21, 2006 3:45 PM

84 Part II: Authoring Reports

2. In the Datasets window, expand DataDetail, click Product, and drag the field to the first
cell of the detail row.

Your table looks like this:

Notice that the field name is automatically placed in the table header of the first column
as static text. An expression is added to the first column’s detail row:

=Fields!Product.Value

This expression is evaluated when the report is processed and replaced with values in
the Product column of the dataset you created. Expressions that place a field value
into a textbox always use this syntax. If you prefer to type a field expression into a text-
box directly, just place the field name between the exclamation point and the period.
However, dragging and dropping is safer because it ensures proper spelling of the
expression.

Tip Because the field name can be used in the table header row, build your query to
give columns a report-friendly name. For example, if the table column in the database is
labeled vProduct, consider writing your query as follows:

Select vProduct as Product…

Reporting Services automatically converts underscores to spaces and adds a space
before capital letters in the middle of a word. For example, both Product_Name and Pro-
ductName would appear as Product Name. Each row of the dataset becomes a separate
detail row in the table when the report is processed. The size of the table adapts dynam-
ically to the number of rows returned by the dataset’s query. By default, the table is
added with three columns. You’ll add an additional column to this report in Chapter 5,
“Working with Expressions.”

3. Make sure the first column is approximately 2 inches wide. If necessary, position your
pointer between the first and second columns and drag to widen the column to 2
inches.

4. In the Datasets window, click SalesAmount and drag to the second cell of the detail row.

Notice that the field name SalesAmount is automatically changed to Sales Amount in the
table header. Notice also that the string in the table header and the expression in the
detail row of the second column are right-justified. The field SalesAmount is a numeric
column to which Report Designer automatically applies right justification.

6-2250-7.book Page 84 Tuesday, March 21, 2006 3:45 PM

Chapter 4: Developing Basic Reports 85

5. Resize the second column to approximately 1.5 inches.

6. In the Datasets window, click OrderQuantity and drag to the third cell of the detail row.

7. Resize the third column to approximately 1.5 inches.

8. In the Datasets window, click SalesAmount and drag to the second cell of the table
footer.

Your table now looks like this:

When you add a numeric field to a table header or table footer, the Report Designer
automatically adds a Sum function to the expression to aggregate the values in the col-
umn to which the field was assigned. In this case, when the report is processed, the sum
of SalesAmount is calculated from the detail rows in the dataset and is displayed in this
table footer cell.

9. In the Datasets window, click OrderQuantity and drag to the third cell of the table
footer.

10. Click the first cell of the table footer, and then type Grand Total.

You can enter a string into any cell. The string is treated as a constant when the report is
processed.

Tip It’s good practice in report design, when using aggregate functions like Sum in a
table header or table footer, to add descriptive text to the same row so the reader under-
stands what the value represents.

11. On the File menu, click Save All.

12. Click the Preview tab.

6-2250-7.book Page 85 Tuesday, March 21, 2006 3:45 PM

86 Part II: Authoring Reports

The top of your report looks like this:

There is one row for the table header, which shows the field names in the header row,
and one detail row for each row in the dataset.

13. Click the Next Page button in the Preview toolbar.

14. Scroll to the bottom of the page.

The table footer displays the string Grand Total and the sum of the detail rows for
SalesAmount and OrderQuantity.

Sorting Table Rows

A new feature in Reporting Services 2005 is the ability to add interactive sorting to a column
so the user can change the sort direction while viewing the report. For example, the report
may display data in an ascending sort order, but if you enable interactive sorting, the user can
click on an icon and reverse the sort order. You enable interactive sorting by changing textbox
properties. Typically, you select the textbox that serves as a label for the column or row to be
sorted, access its properties, and enable the interactive sorting.

When a user accesses a report that uses this feature, each textbox for which you have enabled
interactive sorting will include an icon with two small arrows positioned to the right of the
text. When the user clicks on this icon, the data is sorted in ascending order and the icon
changes to an arrow pointing upward. If the user clicks on the icon again, the data is then
sorted in descending order and the icon changes to an arrow pointing downward. The direc-
tion of the single arrow indicates the sort order, while the presence of the two arrows indicates
that the report’s default sort order is used.

In this procedure, you’ll add interactive sorting to the table.

Add interactive sorting

1. Click the Layout tab.

2. Right-click the textbox in the first column of the table header row that contains the con-
stant value Product, and then click Properties.

6-2250-7.book Page 86 Tuesday, March 21, 2006 3:45 PM

Chapter 4: Developing Basic Reports 87

3. In the Textbox Properties dialog box, click the Interactive Sort tab.

4. Select the Add An Interactive Sort Action To This Textbox check box.

5. Select =Fields!Product.Value in the Sort Expression drop-down list.

The Textbox Properties dialog box looks like this:

6. Click OK.

7. Click the Preview tab.

The top of your report looks like this:

Notice the double-arrows icon that appears next to the Product column label. This
icon indicates that this column can be sorted interactively. When you first open a
report, the default sort order is determined by the order defined by the dataset, unless
you override that sort order by changing the sorting within a data region, as you will
learn in Chapter 6.

6-2250-7.book Page 87 Tuesday, March 21, 2006 3:45 PM

88 Part II: Authoring Reports

8. Click the double-arrows icon next to the Product column label.

Now the icon is an arrow pointing upward, which indicates that the data is now sorted
in ascending order. However, in this case, there is actually no change in the sort order
because the dataset already sorted the products in ascending order.

9. Click the sort icon again to change the sort order to descending.

You can toggle between ascending and descending by clicking the arrow icon to reverse
the current direction. The only way to restore the default sort order, however, is to click
the Refresh button on the Preview toolbar.

Grouping Data in a Table

When a report has many detail rows, it is often helpful to organize the detail rows into groups.
A group is a set of detail rows that have something in common. For example, in your report’s
dataset, each detail row has a unique product name, but many products share the same prod-
uct category. If a group is added to the report based on a product’s category, all products for
one category are arranged together and then followed by another set of detail rows with a dif-
ferent category. You can also nest a group within a group. Because each product category has
several product subcategories, you can add another group to further divide the detail rows
into smaller sets.

You can insert groups into the table to improve the arrangement of data. After adding the
groups, you add fields to the group headers and a function to subtotal the detail rows within
each group.

In this procedure, you’ll add two groups to the table to organize detail rows by Category and
SubCategory.

Add groups to the table

1. Click the Layout tab.

2. Click the table to display the row and column handles.

3. Right-click the row handle for the detail row, and then click Insert Group.

6-2250-7.book Page 88 Tuesday, March 21, 2006 3:45 PM

Chapter 4: Developing Basic Reports 89

The Grouping And Sorting Properties dialog box is displayed:

A default name is assigned to the group: table1_Group1. Every item, including a group,
that you add to a report is assigned a name. The table you are working with is table1, so
the first group added to this table is named table1_Group1. You have the option to keep
this name or supply a new name.

Tip Assigning a new name to a group makes it easier to remember how the group is
being used. For example, you could use the field name by which the table detail rows will
be grouped.

4. Change the name to table1_Category.

5. Click =Fields!Category.Value in the first Expression drop-down list.

6-2250-7.book Page 89 Tuesday, March 21, 2006 3:45 PM

90 Part II: Authoring Reports

When you display the Expression drop-down list, the Grouping And Sorting Properties
dialog box looks like this:

Notice that each item in the list is an expression formed from each field in the dataset.
For each unique value of the selected expression, there is a group in the table.

Also notice from the checked options that, by default, the group header and group
footer are included. When a group header and group footer are included in a table, the
result is the Stepped layout that you reviewed in Chapter 3. Excluding the group header
and group footer results in a table with the Block layout you saw in that chapter.

The Grouping And Sorting Properties dialog box contains several tabs you can use to
manage properties for a group. You’ll learn more about using the other properties in
Chapter 5 and Chapter 6.

6. Click OK.

7. Right-click the row handle for the detail row, and then click Insert Group.

Note The placement of the new group relative to existing groups is determined by
the row you right-click. When you select the detail row, the new group is nested between
the existing groups and the detail row. If you select an existing group, the new group is
added between the selected group and either the other existing groups, if any, or the
detail row when there are no other existing groups.

8. Change the name to table1_SubCategory.

9. Click =Fields!SubCategory.Value in the first Expression drop-down list.

6-2250-7.book Page 90 Tuesday, March 21, 2006 3:45 PM

Chapter 4: Developing Basic Reports 91

10. Click OK.

11. On the File menu, click Save All.

12. Click the Preview tab.

The top of your report looks like this:

Now you can see that products are arranged in groups, but you cannot determine from
the report how each group is defined. You need to add more information to the report.

Adding Group Headers

A group header gives context to the set of detail rows associated with each group. As with any
other textbox in a table, the group header can contain static text, a field value, or a calculation
that might reference a field. Usually, group headers include the same expression used to
define the group.

In this procedure, you’ll add the Category and SubCategory fields to the respective group
headers.

Use field names as a group header

1. Click the Layout tab.

2. In the Datasets window, click Category and drag to the first cell in the table1_Category
header, which is the row just below the table header.

Your table now looks like this:

6-2250-7.book Page 91 Tuesday, March 21, 2006 3:45 PM

92 Part II: Authoring Reports

When the report is processed, the group header displays the value of the field that you
placed in this row. All detail rows with the same value for the field that are selected in
the Grouping And Sorting Properties dialog box will be organized together in the report
between the group header and footer rows. This means that you could group detail rows
by one field and display a header, or caption, for the group using another field. However,
more commonly, you’ll use the same field in both places.

3. In the Datasets window, click SubCategory and drag to the first cell in the
table1_SubCategory header, which is the row just above the detail row.

4. Click the Save All button on the toolbar.

5. Click the Preview tab.

The top of your report looks like this:

Now you can see the category and subcategory displayed in separate rows above each
group of detail rows.

Computing Group Subtotals

Subtotals can be created for each group by placing a function to sum the detail rows into
either a group header or group footer. You can also use other aggregate functions in these
rows, such as an average, which you’ll learn how to do in Chapter 5.

In this procedure, you’ll add static text as a caption in each group footer row, and then insert
the Sum aggregate function in the group footer cells for SalesAmount and OrderQuantity.

Add the Sum function to group footers

1. Click the Layout tab.

2. Click the first cell of the table1_Category footer, which is the row just above the table
footer, and then type Category Total.

3. Click the second cell of the table footer, and then, while pressing Ctrl, click the third cell
of the same row to select both cells.

4. Right-click one of the selected cells, and then click Copy.

6-2250-7.book Page 92 Tuesday, March 21, 2006 3:45 PM

Chapter 4: Developing Basic Reports 93

5. Right-click the second cell of the table1_Category footer, and then click Paste.

The table now looks like this:

Even though the same formula now appears in the table1_Category footer and the table
footer, the results will be different because of the context of the rows. The table footer
sums all detail rows in the table, whereas the table1_Category footer sums detail rows
for each category separately.

6. Click the first cell of the table1_SubCategory footer, which is the row below the detail
row, and type SubCategory Total.

7. Right-click the second cell of the table1_SubCategory footer, and then click Paste.

8. On the File menu, click Save All.

9. Click the Preview tab.

You can see that on the first page of the report, several SubCategory subtotals are inter-
spersed between groups. You need to scroll about halfway down the page to find the
first Category subtotal. However, the group headers and footers aren’t noticeably differ-
ent from detail rows, which make them difficult to pick out.

Formatting a Report Using Report Designer
After defining the data to be gathered for the report and structuring the data within the report,
the next step in authoring a report is to apply formatting and set properties for each report
item. This step is necessary to control the appearance and behavior of the items in your
report. You start with basic formatting to display numeric values properly and to set font
styles and colors for different sections of the report. You continue adjusting the formatting of
your report by designing your report for the printed page and controlling the visibility of
selected report items across pages. Then you finish your report by adding graphical elements
to make it more attractive.

Setting the Format Property

Sometimes you might want to change the format of the data retrieved for your report. Often,
numeric and date or time values require a change from the default format. The Format prop-
erty in the Properties window can be edited to adjust the format of a string in a textbox.

6-2250-7.book Page 93 Tuesday, March 21, 2006 3:45 PM

94 Part II: Authoring Reports

In this procedure, you’ll format the SalesAmount column of the table as Currency, and the
OrderQuantity column as a number with no decimals.

Format numeric values

1. Click the Layout tab.

2. Click the column handle for the second column, which contains Sales Amount values.

All cells in the column are selected when you click the column handle.

3. In the Properties window, find the Format property, and then type C0.

Properties in the Properties window are arranged alphabetically, first by property cate-
gory and then by name.

Note The Report Designer uses Visual Basic .NET formatting strings. The first charac-
ter represents the data format. The most common data formats you’re likely to use are C
for currency, N for numbers, and P for percents. The digit following any of these charac-
ters specifies the number of decimal places, or precision. You can omit the digit if you
want to use the system default for the specified data format. You can find out more
about the system defaults for numeric data formats at http://msdn.microsoft.com/library
/en-us/cpguide/html/cpconstandardnumericformatstrings.asp.

When you select multiple cells, such as all cells in a column, the property setting that
you apply affects all selected cells. You can also change several properties at once to
update the cells while they remain selected.

4. Click the column handle for the third column, which contains Order Quantity values.

5. In the Properties window, find the Format property and type N0.

6. On the File menu, click Save All.

7. Click the Preview tab.

The numeric values are now formatted correctly.

Applying Styles

You can edit style properties for every item in a report, such as background colors, border
styles, font styles and colors, and padding values. Like the Format property, style properties
can be edited in the Properties window. Not all style properties are available to every report
item. For example, only items that can contain text have font style properties. The easiest way
to apply common styles is to use the Report Formatting toolbar.

In this procedure, you’ll use the Report Formatting toolbar to set the background color of the
detail row and the font styles of the headers and footers for the table and groups.

6-2250-7.book Page 94 Tuesday, March 21, 2006 3:45 PM

Chapter 4: Developing Basic Reports 95

Use the Report Formatting toolbar to set color and font style properties

1. Click the Layout tab.

2. Click the row handle of the detail row to select the entire row.

3. On the Report Formatting toolbar, click the Background Color button.

The Background Color button looks like this:

Note If the Report Formatting toolbar is not visible, right-click any Visual Studio tool-
bar, and then click Report Formatting. You might need to rearrange the toolbars to view
the entire Report Formatting toolbar.

4. On the Web tab, click Silver, and then click OK.

The new background color is applied to the detail row.

5. Click the row handle for the table header, and then, while pressing Ctrl, click the table
footer row handle to select both rows.

Tip When you want to apply the same formatting styles to several rows, select each
row handle while pressing Ctrl.

6. On the Report Formatting toolbar, click 12 in the Font Size drop-down list, click the
Bold button, and then click the Background Color button.

7. On the Web tab, click Black, and then click OK.

8. On the Report Formatting toolbar, click the Foreground Color button, which is to the
left of the Background Color button.

9. Click the Web tab, click White, and then click OK.

Note Alternatively, you can set these properties directly in the Properties window. The
Background Color button sets the BackgroundColor property, and the Foreground Color
button sets the Color property.

Expand the Font category to access the font properties. The Font Size list box selection
sets the FontSize property. The Bold and Italic buttons set the FontWeight and FontStyle,
respectively. Finally, the Underline button sets the TextDecoration property, which is not
categorized with the other font properties.

6-2250-7.book Page 95 Tuesday, March 21, 2006 3:45 PM

96 Part II: Authoring Reports

10. Click the table1_Category header row handle, and then click the table1_Category footer
row handle while pressing Ctrl to select both rows.

11. On the Report Formatting toolbar, click 12 in the Font Size drop-down list, click the
Bold button, then click the Background Color button.

12. On the Web tab, click Gainsboro, and then click OK.

13. Click the table1_SubCategory header row handle, and then click the
table1_SubCategory footer row handle while pressing Ctrl to select both rows.

14. On the Report Formatting toolbar, click 11 in the Font Size drop-down list, and then
click the Bold button.

15. On the File menu, click Save All.

16. Click the Preview tab.

The top of your report looks like this:

By applying different format styles to each section of the report, the distinctions between
the table headers and footers, the group headers and footers, and the detail rows are
clearer.

Editing Properties

The Report Formatting toolbar contains only some of the properties available for editing. To
access all formatting properties, use the Properties window. For example, you might want to
adjust the padding within a textbox. Padding is the white space between the sides of a textbox
and the text inside the textbox, just like a margin is the white space between the sides of a
page and the text on the page. You can adjust the amount of padding on any side of the text-
box: top, bottom, left, or right. The default padding of each side of the textbox is 2 points.

In this procedure, you’ll adjust the padding in the first column of the detail row and the
table1_SubCategory group header and footer to indent the column values in these rows.

6-2250-7.book Page 96 Tuesday, March 21, 2006 3:45 PM

Chapter 4: Developing Basic Reports 97

Indent a column

1. Click the Layout tab.

2. Click the first cell in the detail row, which is the Product cell.

3. In the Properties window, click the plus sign to expand the Padding category.

4. In the Padding Left property field, type 22pt.

Your Properties window looks like this:

Note In the Properties window, some properties, such as Padding properties, are
arranged in categories. The category name appears in the Properties list with a plus or
minus sign so you can expand or collapse the category. By default, the category is col-
lapsed to make finding a property easier. When the category is expanded, you can mod-
ify any individual property that category contains. The field to the right of the category
name has the values of all properties in the category. If you know the position of the
property you want to change, you can edit the category values.

Note In the example in this procedure, you can replace 2pt, 2pt, 2pt, 2pt, with 22pt,
2pt, 2pt, 2pt. The sequence of values from left to right in the category field corresponds
to the properties grouped in the category from top to bottom. So, for the Padding cat-
egory field, the sequence of values corresponds to Padding Left, Padding Right, Padding
Top, and Padding Bottom.

5. Click the first cell in the table1_SubCategory header, and then, in the Properties win-
dow, type 12pt in the Padding Left property field. Repeat for the first cell in the
table1_SubCategory footer cell.

6. On the File menu, click Save All.

7. Click the Preview tab.

6-2250-7.book Page 97 Tuesday, March 21, 2006 3:45 PM

98 Part II: Authoring Reports

The top of the report now looks like this:

Adding Floating Headers

The ability to add floating headers is a feature that is similar to Freeze Panes in Microsoft
Excel, which keeps a header row in place while the user scrolls vertically through a docu-
ment. This feature is particularly useful for documents that contain more data than can be
shown on the screen. When working with a matrix data region, you can also use this feature
with rows to help users navigate data horizontally.

In this procedure, you’ll add floating headers to a table.

Add floating headers

1. Click the Layout tab.

2. Click the table to display the row and column handles.

3. Right-click the table handle, which is located in the top-left corner of the table, and then
click Properties.

4. In the Table Properties dialog box, select the Header Should Remain Visible While
Scrolling check box.

6-2250-7.book Page 98 Tuesday, March 21, 2006 3:45 PM

Chapter 4: Developing Basic Reports 99

The Table Properties dialog box looks like this:

5. Click OK.

6. Click the Preview tab and scroll to the bottom of the page.

Your screen should look similar to this:

Even though you have scrolled to the bottom of the page, the header columns remain
visible.

6-2250-7.book Page 99 Tuesday, March 21, 2006 3:45 PM

100 Part II: Authoring Reports

Triggering Page Breaks

When the report was added to the project, the PageSize Width property of the report was set by
default to 8.5in and the PageSize Height was set to 11in. When you render the report to pre-
view it, the rendering engine determines the number of rows that can fit on a page and creates
page breaks automatically. However, you can specify your own trigger for a page break, such as
a change in a group value or following a selected report item. You’ll learn how to design pages
for other rendered formats in Chapter 13, “Rendering Reports.”

In this procedure, you’ll add a page break to the table1_Category group.

Add pagination

1. Click the Layout tab.

2. Click the blank area in the Document window below the design grid.

The Report properties display in the Properties window. Note the default settings for the
Margin and PageSize properties.

3. Click the table to display the row and column handles.

4. Right-click the table1_Category footer row handle, and then click Edit Group.

5. Select the Page Break At End check box.

6. Click OK.

7. On the File menu, click Save All.

8. Click the Preview tab.

Your report now has four pages, one for each category. Notice that the number of detail
rows per page is different. The rendering engine still inserts a page break if there are
more detail rows within a category than will fit on a single page. However, the group
page break forces a new page when the category changes, regardless of the number of
detail rows.

Note If Reporting Services followed the page break instruction literally, it would put a
page break after the last category, putting the Grand Total on a page by itself. However,
Reporting Services doesn’t do this.

Adding a Textbox

So far, you’ve been working with textboxes that are organized as a table. A textbox can also be
placed into the report as a separate report item. For example, to add a static title, or report
header, to the report, you can add a textbox. You’ll learn other uses for an independent text-
box in Chapter 5 and Chapter 6.

6-2250-7.book Page 100 Tuesday, March 21, 2006 3:45 PM

Chapter 4: Developing Basic Reports 101

In this procedure, you’ll add a textbox to the design grid and insert static text to create a
report header.

Add static text

1. Click the Layout tab.

2. Click the handle in the top-left corner to select the entire table. If you can’t see the table
handles, click the table first.

3. Drag the table down to place the top of the table approximately 1.5 inches from the top
of the report body.

4. In the Toolbox window, click Textbox.

5. Click the top-left corner of the report body, and then drag the corner of the textbox to
the right and down to create a textbox approximately 3.5 inches wide and 1.25 inches
high.

Note You can also use the Size Width and Height properties in the Properties window
to set the size of the textbox once it is placed in the report body. Another option is to
drag the sides of the textbox to resize it as desired.

Your screen now looks like this:

The textbox was added as a report item and automatically assigned a name, similar to
textbox15.

6. Click inside the textbox, and then type Adventure Works Product Profitability Report.

6-2250-7.book Page 101 Tuesday, March 21, 2006 3:45 PM

102 Part II: Authoring Reports

Note Text will wrap to a new line automatically to fit the width of the textbox, but will
never expand the textbox horizontally. In the rendered report, the textbox will expand
vertically to display all text contained in the textbox if its CanGrow property is set to True,
which is the default. You can force a new line in the text by pressing Shift+Enter at the
desired position.

7. Make sure the textbox is still selected in the design grid, click 20 in the Font Size drop-
down list, and then click the Bold button in the Report Formatting toolbar.

Note Unlike the way you apply formatting in a word processing application, you don’t
need to select the text in the textbox before applying the formatting styles. You only
need to have the textbox selected.

8. On the File menu, click Save All.

9. Click the Preview tab.

The top of the report looks like this:

Notice that the text does not get truncated.

10. Click the Next Page button.

The textbox you added does not appear on this or any other page because you added it
above the table. In this usage, the textbox acts as a report header because it is not con-
tained within a repeating region and consequently only appears once. (You’ll learn more
about repeating regions in Chapter 6.) Also, notice that the table header is not repeated.
Even though the table header is a collection of textboxes that is contained in a repeating
region, its designation as a table header results in rendering that is different from other
rows in the same table. By default, the table header is displayed only on the first page.

6-2250-7.book Page 102 Tuesday, March 21, 2006 3:45 PM

Chapter 4: Developing Basic Reports 103

Setting Table Properties

As you learned in the previous procedure, a table header is displayed only on the first page
that contains the table. If you want to repeat the table header on every page, you can edit the
RepeatOnNewPage property for the row. The table header will then be repeated, but only on
the pages that include the table.

In this procedure, you’ll edit the table property to force the table header to repeat on each page
of the report.

Repeat the table header

1. Click the Layout tab.

2. Click the table, and then click the table header row handle.

The properties for this item, TableRow1, are displayed in the Properties window.

3. Scroll to the bottom of the Properties window to locate the RepeatOnNewPage property
in the Layout section.

4. In the Properties window, click True in the drop-down list for the RepeatOnNewPage
property.

Note Similarly, group headers and footers appear only at the beginning or end of a
group. You can edit the group to set options in the Grouping And Sorting Properties dia-
log box so you can force the group header or footer to repeat on each page, or you can
select the group row in the table and set the RepeatOnNewPage property in the Proper-
ties window.

5. On the File menu, click Save All.

6. Click the Preview tab.

7. Click the Next Page button.

The top of the second page of your report looks like this:

6-2250-7.book Page 103 Tuesday, March 21, 2006 3:45 PM

104 Part II: Authoring Reports

Working with Page Headers

When you want to repeat the same content at the top of every page, you can use a page header.
A page header can contain textboxes and images, but it cannot contain data regions, subre-
ports, or any item that directly references a field.

In this procedure, you’ll add a page header containing a textbox that will be suppressed on
the first page, but printed on every other page.

Add a page header

1. Click the Layout tab.

2. Right-click the blank area in the Document window to the left of the report body, and
then click Page Header. Alternatively, on the Report menu, you can click Page Header.

Your screen looks like this:

3. In the Toolbox window, click Textbox.

4. Click the top-left corner of the page header section, and then drag the corner of the text-
box to the right and down to create a textbox approximately 5 inches wide and 0.25
inches high.

5. In the Properties window, select Right in the Text Align drop-down list.

The page header will now align with the right edge of the table. If you add more columns
or additional items later that increase the width of the report, you’ll also need to adjust
the location of the textbox in the header.

6. Click the textbox to select it, and then enter Product Profitability Report.

6-2250-7.book Page 104 Tuesday, March 21, 2006 3:45 PM

Chapter 4: Developing Basic Reports 105

Tip If the right edge of the report is hidden by Solution Explorer, you might not be
able to see the text as you type. In that case, simply use the horizontal bar to scroll the
Document window to the right or resize windows to confirm the text is entered properly.
Another option is to Auto Hide the Solution Explorer and Properties windows.

7. In the Properties window, select Page Header in the report item drop-down list at the top
of the window (or click anywhere in the page header’s design grid), and then scroll to
the bottom of the window to find the properties in the Misc group.

Tip Type P after opening the Properties report item drop-down list to jump to the
report items beginning with that letter instead of scrolling. This list can get long when
you’re building complex reports.

8. Click False in the PrintOnFirstPage property drop-down list.

9. Make sure True is the current setting for the PrintOnLastPage property.

10. On the File menu, click Save All.

11. Click the Preview tab.

12. Click the Next Page button.

The page header appears only on pages 2 through 4.

Working with Page Footers

Like a page header, you can use a page footer to repeat content on every page of the report.
The same rules regarding what can be placed in this area of the report apply. You can also
choose whether to suppress the page footer from the first or last page of the report.

In this procedure, you’ll add a page footer with static text that will print on every page of the
report.

Add a page footer

1. Click the Layout tab.

2. Right-click the blank area in the Document window to the left of the report body, and
then click Page Footer.

You might need to close the Output window to view the newly added page footer.

3. In the Toolbox window, click Textbox.

6-2250-7.book Page 105 Tuesday, March 21, 2006 3:45 PM

106 Part II: Authoring Reports

4. Click the top-left corner of the page footer section, then drag the corner of the textbox
to the right and down to create a textbox approximately 2.0 inches wide and 0.25
inches high.

5. Click the textbox to select it, and then type Company Confidential.

6. In the Report Formatting toolbar, click the Italic button.

7. In the Properties window, click Page Footer in the report items drop-down list.

The PrintOnFirstPage and PrintOnLastPage properties are both set to True by default.

8. On the File menu, click Save All.

9. Click the Preview tab.

The page footer is displayed on the first page.

10. Click the Next Page button to check the existence of the page footer on all other pages.

Adding Graphical Elements

Lines and images are graphical elements you can use to give your report an attractive, profes-
sional appearance. These report items are added to the report from the Toolbox window like
the other report items you’ve learned how to use. You can use the graphical interface to resize
the graphical elements as desired, or you can use the Properties window to edit properties.

In this procedure, you’ll add a line to the top of the report to separate the report body from the
page header.

Add a line

1. Click the Layout tab.

2. In the Toolbox window, click Line.

3. Click the top-left corner of the report body, and then drag the line to the right to match
the width of the table.

Tip Adding a line to the design grid is easier if, before you start, you make the window
large enough to show the beginning and end of the line. If you do not, you’ll spend time
moving and resizing your line to get it right.

6-2250-7.book Page 106 Tuesday, March 21, 2006 3:45 PM

Chapter 4: Developing Basic Reports 107

Your screen looks similar to this:

Because the line is small, it might be hard to see in the design grid right now. You should
be able to see the line handles at each end. You can use these to lengthen or shorten the
line as needed. In the Properties window, you can view the properties for the new report
item, line1.

4. In the Properties window, scroll up to find the LineWidth property in the Appearance
category, and then change the property value to 12pt.

5. If the line covers some of the text in the textbox containing the report title, drag the text-
box a little lower on the design grid.

As you add report items to the design grid, you will probably need to tweak their
arrangement to prevent one item from obscuring another.

6. On the File menu, click Save All.

7. Click the Preview tab.

6-2250-7.book Page 107 Tuesday, March 21, 2006 3:45 PM

108 Part II: Authoring Reports

The top of the report looks like this:

Because the line was added to the report body, it is displayed only on the first page. If
you want a line to repeat, you must add it to a repeating section of a data region, such as
a group header, a group footer, or a detail row.

Adding Images

In addition to containing data regions and free-standing textboxes, a report can contain logos
and other types of graphical images. You can embed an image within the report itself or refer-
ence an image that is stored on the Report Server. Often, an image is included in a report as a
free-standing item, like the report header you added earlier in this chapter. However, you can
also use images in detail rows if you have stored images in a database, such as product images
for a catalog.

In this procedure, you’ll add the Adventure Works logo as an embedded image at the top of
the report.

Use the Image Wizard to add an embedded logo to a report

1. Click the Layout tab.

2. In the Toolbox window, click Image.

3. Click the top-right corner of the report body just below the line and to the right of the
textbox you created as a report header.

The Image Wizard is launched.

4. Click Next.

6-2250-7.book Page 108 Tuesday, March 21, 2006 3:45 PM

Chapter 4: Developing Basic Reports 109

The Select The Image Source page of the Image Wizard is displayed:

Here you specify where the image to be added to the report is stored: embedded, project,
database, or Web.

■ An embedded image is converted to a Multipurpose Internet Mail Extension
(MIME) object, which allows the image to be stored as text in the report definition
file. Using an embedded image ensures that the image is always available to the
report, but it also makes the report definition file much larger.

Important ASP.NET imposes a 4-MB limit on items that are posted to the server.
Report definition files rarely exceed this limit unless you use embedded images. You can
increase this limit by changing the maxRequestLength element in the Machine.config
file, but by doing so, you also increase the vulnerability of the server to denial of service
attacks. Editing this file is beyond the scope of this book. If you need to use multiple
images in a report, include them as shared resources in the project or store them in a
database field.

■ A project image is an image that is stored as an item in the project. You can choose
an image that was already added to the project, or you can use the wizard to add
an image. When publishing the project, the report definition and the image files
are placed on the Report Server separately. As a result, the report definition file is
smaller than it is when using an embedded image. Using project images is a good
strategy when you want to use the same image within several reports, such as a
company logo.

6-2250-7.book Page 109 Tuesday, March 21, 2006 3:45 PM

110 Part II: Authoring Reports

■ A database image is retrieved as binary data by the query in the dataset and is
included in the detail row. You specify the dataset, the column of query results
containing the image, and the MIME type. Because the image is part of the dataset,
the images are not stored in the report definition file.

■ A Web image is an image that can be accessed from a Web server by using a URL
address. You specify the full address to the image, such as http://<servername>
/Images/myImage.jpg.

5. Click Embedded, and then click Next.

6. Click New Image.

7. Open the image at C:\Documents and Settings\<username>\My Documents\Microsoft
Press\rs2005sbs\chap04\logopart.jpg.

8. Click logopart name in the Name column and enter Logo to replace the default name.

Tip Choose a name for the image with care so you can find it easily when working
with your report.

9. Click Next, and then click Finish.

The image is now embedded in the report as an independent report item.

Tip You can also use an image with any item in the report that has the Background-
Image property. For example, you can use an embedded image as a background for a
table or textbox.

10. Click the image, and then drag down so that the height of the image matches the height
of the report header textbox.

The top of the design grid looks like this:

11. On the File menu, click Save All.

12. Click the Preview tab.

6-2250-7.book Page 110 Tuesday, March 21, 2006 3:45 PM

Chapter 4: Developing Basic Reports 111

The top of the report looks like this:

The Adventure Works logo appears only on the first page because it was added to the
report body, not to the page header.

Chapter 4 Quick Reference

To Do this

Create a new report
project

On the File menu in Visual Studio, point to New, and then click Project. Choose
the Report Server Project template to create an empty report project. Enter a
name and a physical folder location for the project.

Add a blank report to a
project

In Solution Explorer, right-click the Reports folder of a project, point to Add, and
then click New Item. Select the Report template, type a report name with an .rdl
extension, and then click Open.

Add a shared data source In Solution Explorer, right-click the Shared Data Sources folder, and then click
Add New Data Source. In the Shared Data Source dialog box, select a provider
and enter a server name and credentials for authentication, if needed; and se-
lect a database name.

Add a dataset On the Data tab of the Report Designer, click <New Dataset…> in the Dataset
list box, change the name of the dataset if desired, enter a query string, and
then click OK.

Add a data region Open the Toolbox window, click the desired data region, point to the target
destination in the report body, and then click to place the data region.

Add fields to a table In the Datasets window, click the field to be added and drag to a data region
cell or textbox.

or

Type a field expression directly in the cell or textbox. For example:

=Fields!Product.Value.

6-2250-7.book Page 111 Tuesday, March 21, 2006 3:45 PM

112 Part II: Authoring Reports

Sorting Table Rows Right-click on a textbox (such as a table header), select Properties, click the In-
teractive Sort tab, and then select the Add An Interactive Sort Action To This
Textbox check box.

Add a group to a table Click the table to display the row handles. Right-click a row, and then click Insert
Group. Change the name of the group, if desired, and select one or more ex-
pressions from the list box to use for grouping detail rows.

Include subtotals in a
table

Copy an expression that returns a numeric value from the table footer and paste
into a group header or group footer row.

or

Type an aggregate expression in a group header or group footer cell. For
example, to compute a subtotal: =Sum(Fields!SalesAmount.Value).

Create a floating header Right-click the table handle, select Properties, and then select the Header
Should Remain Visible While Scrolling check box.

Format a numeric value Click the textbox (or multiple textboxes) containing the numeric expression to
format and edit the Format property in the Properties window. Use Visual Basic
.NET formatting strings, such as C2, N0, or P1.

Apply formatting styles
to text

Click the textbox (or multiple textboxes), and then click the applicable style but-
ton in the Report Formatting toolbar or edit the applicable style property in the
Properties window.

Add a page break To insert a page break between report items, such as between a report and a
chart, click a report item, and then edit the PageBreakAtEnd or PageBreakAt-
Start property in the Properties window to apply the page break accordingly.

To insert a page break in a table, click the table to display the row handles. Click
the row you want to use to trigger a page break when the value changes, and
then edit the RepeatOnNewPage property in the Properties window.

Add a page header or
page footer

Right-click the empty space in the Document window surrounding the design
grid, and then click either Page Header or Page Footer.

Add a free-standing
textbox

Open the Toolbox window; click Textbox; point to the target destination in the
report body, page header, or page footer; and then click to place the data region.

Suppress page headers or
page footers from the first
or last page

Click Page Header or Page Footer in the report item list box of the Properties
window, and then set the PrintOnFirstPage or PrintOnLastPage property to
False.

Repeat table rows across
pages

Click the table to display row handles, click the table row to repeat on each
page, and then, in the Properties window, set the RepeatOnNewPage property
to True.

Add a graphical element Open the Toolbox window, click the graphical element (either Line or Image),
and then point to the target destination in the report body, page header, or
page footer. If adding a line, drag the cursor across the page to the desired
length. If adding an image, click to place the image in the report and use the
Image Wizard to locate the image and define the storage for the image.

To Do this

6-2250-7.book Page 112 Tuesday, March 21, 2006 3:45 PM

113

Chapter 5

Working with Expressions

After completing this chapter, you will be able to:

■ Use global object collections in expressions.

■ Create expressions with aggregate functions.

■ Change the report appearance with expressions.

In the previous chapter, you started a report project to which you added a report containing a
table data region and other report items. You also edited properties of these report items to
manipulate their appearance and behavior in the report. In this chapter, you expand the same
report. You build some expressions that perform calculations on values in the dataset and
build others that use information that is available only after the report is processed. You also
use aggregate functions in various places in the report to learn how the location of a function
affects the context of the aggregate. Finally, you change properties by using expressions that
are based on conditions or values in the report. Since these expressions are evaluated at run
time, the appearance and behavior of the report can change dynamically.

Using Expressions to Calculate Values
You started working with expressions in Chapter 4, “Developing Basic Reports,” by adding
fields to the table. When you drag a field from the Datasets window and drop it into a cell, the
Report Designer inserts a field expression into that cell. For example, the first cell of the detail
row in your report contains the following expression: =Fields!Product.Value. An expression
that points to a field is the simplest expression of all. Like all expressions, it starts with an
equal sign (=) and is written in Microsoft Visual Basic. This expression refers to the Product
field by using standard Visual Basic collection syntax, in which Fields is the name of the object
collection, Product is the name of an object in the collection, and Value is the property of the
object. In this case, for each row, the expression returns the value of the Product field in the
Fields collection for the current row.

You can create more complex expressions by using functions or by combining field expres-
sions with mathematical operators to perform a calculation. The expression in the second cell
in the table footer, =Sum(Fields!SalesAmount.Value), is an example of an expression that
uses an aggregate function, which you learn more about later in this chapter. Expressions are
commonly used to display field values and calculated values in a report.

6-2250-7.book Page 113 Tuesday, March 21, 2006 3:45 PM

114 Part II: Authoring Reports

Once you have data for your report, you often need to perform additional calculations using
this data to derive values that aren’t stored in the database. For example, you might need to
include the product margin in the report. The margin is the difference between the amount for
which the product sold and the cost of making or acquiring it. Even though margin isn’t
stored as a value in the database, it can be derived from other values that are stored in the
database by building an expression that subtracts CostAmount from SalesAmount. An expres-
sion can be added as a calculated field to the dataset, and then used in a table as if it were part
of the original dataset.

Not all expressions are based on fields in the dataset. Another type of expression that you
might want to use in a report can be created using a global variable. Reporting Services makes
available certain information about a report, such as page numbering, which you can access
through the Globals collection. For example, to keep track of the number of pages in a report,
you can use the PageNumber and TotalPages global variables to access the numbering that
Reporting Services stores for you. You can create a calculated field to store a global variable
expression, or you can type the expression directly into a textbox. In this way, you can avoid
writing code to access page numbering.

A third type of expression that is handy to use in reports is a report item expression. To create
a report item expression, you use the ReportItems collection to access the value stored in a
textbox. A value in the textbox, if derived from a field expression, such as the margin exam-
ple discussed earlier in this section, doesn’t come directly from the dataset but is stored there
to be displayed in the report or for use in another expression. You can think of the textbox as
not just a display item, but also as a holding area for a value that can be used as part of
another calculation.

Creating Calculated Fields

The Datasets window initially displays the list of database fields contained in the dataset you
create. You can add expressions as calculated fields to this list. Once a calculated field is cre-
ated in the dataset, you can use it in a report just like a database field. It’s evaluated the same
way, too, for each row in the dataset. If an expression needs to be used in several places, create
a calculated field so that, if you need to change the expression, you can edit the expression in
one place. However, you can also enter an expression directly into a textbox when it’s used in
only one or two places in a report.

In this procedure, you’ll create a field to compute each product’s margin. After you finish cre-
ating the calculated field, you will carry out another procedure to add the calculated field to a
new column in the report.

Create a field to compute Margin

1. Start SQL Server Business Intelligence Development Studio and open the solution My
Adventure Works you saved in the C:\Documents and Settings\<username>\My
Documents\Microsoft Press\rs2005sbs\Workspace\My Adventure Works folder.

6-2250-7.book Page 114 Tuesday, March 21, 2006 3:45 PM

Chapter 5: Working with Expressions 115

Note If you skipped Chapter 4, open the solution My Adventure Works in the
C:\Documents and Settings\<username>\My Documents\Microsoft Press\rs2005sbs
\Answers \chap04\My Adventure Works folder.

2. Open the Product Profitability report, if it isn’t already open, by double-clicking the
report name in Solution Explorer.

3. In the Datasets window, expand DataDetail, right-click anywhere in the same window,
and then click Add to display the Add New Field dialog box. Remember that when you
add a field to a cell in a heading row, the name of the field, and not the field expression,
is inserted.

Tip If you right-click when pointing to an existing field, and then click Edit, you can
make changes to that field. For example, if the name of a database field isn’t user-
friendly, you could change the name directly in the Fields collection. As you recall from
Chapter 4, the name of the field is automatically added to a table header. While you can
override the name in the table header textbox, you may find it more efficient to rename
the field in the Datasets window if you reuse this field several times in the same report.

4. Type a name for the field: Margin.

5. Select the Calculated Field option, and then click the Expression button that appears to
the right of the Calculated Field textbox.

The Edit Expression dialog box is displayed:

Notice five object collections in the list on the bottom left of the dialog box: Constants,
Globals, Parameters, Fields (DataDetail), and Datasets. You’ll be working with the Fields

6-2250-7.book Page 115 Tuesday, March 21, 2006 3:45 PM

116 Part II: Authoring Reports

(DataDetail) collection in this procedure and with the Globals collection later in this sec-
tion. Each collection contains objects you can use in an expression. In addition to object
collections, you can use Operators and Common Functions to build an expression.

6. Click Fields (DataDetail) to view its members.

7. Double-click SalesAmount to add it to the Expression pane.

8. In the Expression pane, place the cursor after =Fields!SalesAmount.Value and then
type – (minus sign).

9. Double-click the CostAmount field in the Fields pane to finish the expression so the Edit
Expression dialog box looks like this:

Alternatively, you can type the expression in the field directly. By double-clicking objects
from the Fields collection to insert the field names, you can be sure that you’re not intro-
ducing a spelling error.

Important When multiple database fields are used in the same expression, all
the fields must come from the same dataset. Also, Microsoft Visual Basic .NET is case-
sensitive, so you must use field names correctly. If you don’t use the proper case, the
field name is not recognized, and you won’t be able to view the report because of the
resulting compilation error.

10. Click OK to close the Edit Expression dialog box.

6-2250-7.book Page 116 Tuesday, March 21, 2006 3:45 PM

Chapter 5: Working with Expressions 117

The expression is inserted into the Calculated Field textbox, as shown here:

11. Click OK to close the Add New Field dialog box.

The Margin field is now part of the dataset and appears in the Datasets window, as
shown here:

12. Save your report.

In the next procedure, you’ll add a new column to the table in your report, into which you add
the calculated field—Margin—to the detail row and an expression to compute margin subtotals
in the footer rows.

Add Margin to the table

1. Click the table to display its handles. Right-click the column handle for the third column
(Order Quantity), and then click Insert Column To The Right.

6-2250-7.book Page 117 Tuesday, March 21, 2006 3:45 PM

118 Part II: Authoring Reports

Your screen looks like this:

A new column appears in the table. The new column has the same formatting properties
as the column you selected. In this case, the Format property of the Order Quantity col-
umn is set to N0, which is the value automatically assigned to the Format property for
the new column. Notice that the style formatting of each row of the Order Quantity col-
umn is also duplicated in the new column.

Note You can also insert rows into a table by right-clicking a row handle and clicking
Insert Row Above or Insert Row Below. The inserted row becomes the same row type as
the selected row, such as a detail or footer row.

2. Click Margin in the Datasets window and drag the field to the last cell in the detail row.

Notice that the field name is added to the table header automatically. Also, the expres-
sion placed in the detail row is an expression that references the Margin field and is not
the underlying expression you assigned to the field.

3. Drag Margin from the Datasets window to the last cell in the table1_SubCategory footer,
just below the detail row.

The Sum function is added automatically to the field expression because this row is a
footer row.

6-2250-7.book Page 118 Tuesday, March 21, 2006 3:45 PM

Chapter 5: Working with Expressions 119

4. Press Enter to select the expression in this cell. Copy this expression to the clipboard,
click the cell beneath it in the table1_Category footer twice so the cursor appears in
the textbox, and then paste the contents of the clipboard (the expression itself) into
the cell.

Note There is a difference between copying an expression and copying a cell. Copy-
ing an expression does not copy the formatting to the destination cell. Copying a cell, by
contrast, also copies the formatting to the target cell.

5. Click the last cell in the table footer twice, and then paste the expression that is still in
the clipboard into that cell.

6. Click the column handle for the Margin column to select all cells in the column, and
then type C0 in the Format property in the Properties window to display margin values
as currency without decimals.

7. Save the solution files, and then preview the report to confirm that the top of your
report looks like this:

Using Global Variables

Global variables are members of the Globals collection, in which Reporting Services tracks
information unique to a report. You can display this information in the report by including a
global variable in an expression placed in a textbox. Six global variables are available for you
to use. They are especially useful for embedding report information in printed reports.

The global variables PageNumber and TotalPages can be used only in the page header or footer.
However, the other global variables can be used anywhere that you can place a report item.
You can use ExecutionTime to include the date and time that the report was executed so users
know how current the report is. To help users locate the report online, you can include the
report name and location information by using ReportName, ReportServerUrl, and ReportFolder
(which includes the full path to the report without the URL).

6-2250-7.book Page 119 Tuesday, March 21, 2006 3:45 PM

120 Part II: Authoring Reports

Global variables are different from fields. Reporting Services does not have values for the glo-
bal variables until after the report is processed, but it can access these values before the report
is rendered. Fields, on the other hand, are populated with values during processing and then
are no longer accessible by Reporting Services once processing has completed. As you learned
in Chapter 4, the report data is independent of the report layout to enable rendering in any
format. Consequently, some information is simply not available until the query is processed
and merged into the report layout. Take, for example, page numbering. A report rendered for
online viewing in HTML has a different page-numbering system than the same report ren-
dered for print. Until the report has been processed and prepared for rendering, neither the
current page number nor the total number of pages are available as global variable values.

 In this procedure, you’ll edit expressions in textboxes displayed in the page header and
report body to incorporate the global variable, ReportName, in the report title.

Add global variables to the report

1. Click the Layout tab, right-click the textbox in the page header, and then click Expression.

2. Replace the existing expression, Product Profitability Report, with = (equal sign).

3. Click Globals in the leftmost pane, click ReportName in the middle pane, and then click
the Paste button.

The Paste button inserts an expression that references the selected item, in this case,
Globals!ReportName, into the Expression box, as shown below:

Notice the other global variables that you can use in an expression.

6-2250-7.book Page 120 Tuesday, March 21, 2006 3:45 PM

Chapter 5: Working with Expressions 121

4. Type + "Report" at the end of the expression so the edited expression looks like this:

=Globals!ReportName+" Report"

Note Be sure to include the space between the quotation mark and the word Report
to properly separate the text when the expression is evaluated and displayed in the
report.

5. Click OK.

6. Right-click the textbox that contains the report title in the body of the report, and then
click Expression.

7. Replace the existing expression by typing this: ="Adventure Works "+.

8. Click Globals in the leftmost pane, and then double-click ReportName in the middle
pane.

9. To finish the expression, type + " Report" at the end. The complete expression looks
this:

="Adventure Works "+ Globals!ReportName+" Report"

10. Click OK.

11. Save your report and preview it to check the results.

Notice that the current title of the report is Adventure Works Product Profitability
Report.

12. Click the Next Page button to confirm the report title in the page header.

13. In Solution Explorer, right-click Product Profitability.rdl, click Rename, and then type a
new name for the report: Product Sales and Profitability.rdl.

14. Click the Refresh button in the Preview toolbar to reset the session cache.

6-2250-7.book Page 121 Tuesday, March 21, 2006 3:45 PM

122 Part II: Authoring Reports

15. Click the Next Page button to check that the title of the report is updated appropriately,
as shown in this illustration:

Tip The ReportName global variable is useful for reusing report items in many reports
to retain a consistent appearance.

Using the ReportItems Collection

The ReportItems collection contains the report’s textboxes as objects. You can use a report
item expression to display the value of a textbox in a separate textbox or to use a textbox’s
value as part of a separate calculation. Report item expressions are similar to global variables
because they are evaluated by Reporting Services after processing completes but before ren-
dering. Field expressions in detail and aggregated rows must be evaluated first from the
dataset so a textbox has a value that can be used by the report item expression.

Report item expressions, therefore, are useful in situations in which a calculation can be per-
formed only after the dataset is aggregated, and the calculation cannot be derived directly
from the dataset. For example, to calculate subtotals in the table, the Sum function is used
with a field expression. However, if the field expression evaluates as a percentage, the Sum
function is no longer applicable because percentages are not additive. Specifically, a percent-
age value in the table footer cannot be calculated by summing percentage values in the detail
rows. When working with nonadditive values like ratios or percentages, you must perform the
division on aggregated values. To accomplish this, you can use a report item expression to
summarize percentage values in rows in which you are using subtotals.

6-2250-7.book Page 122 Tuesday, March 21, 2006 3:45 PM

Chapter 5: Working with Expressions 123

A report item expression used in a textbox that is inside a data region can retrieve the value of
a textbox that is either on the same level or a higher level if the data region has grouping
defined. This means that you cannot use an expression in a summary row that refers to a text-
box in a detail row. Essentially, this is because the report item expression in a data region is
acting as a pointer to one other textbox at a time, and therefore can retrieve only one result.
Because multiple rows can be on a lower level, there is no way to identify which one of those
rows contains the value that the report item expression should retrieve.

In this procedure, you’ll add report item expressions to calculate the margin percentage in the
detail and summary rows of the table.

Add report item expressions to the table

1. Click the Layout tab, click the table, right-click the Margin column handle, and then
click Insert Column To The Right.

2. In the last cell of the table header, type Margin %.

3. Click the Margin % column handle to select all cells in the column, and then type P1 in
the Format property to display the expression as a percentage with one decimal place.

4. Right-click the last cell in the detail row, click Expression, enter the following expression
in the Expression pane, and then click OK.

=ReportItems!Margin.Value/ReportItems!SalesAmount.Value

Tip You can also type the expression directly into the textbox, but the width of the
textbox often makes it difficult to see what you’re doing when working with longer
expressions. Another way to edit the expression is to click <Expression…> in the Value
property for the textbox in the Properties window.

This expression retrieves the value from the Margin textbox, and then divides the value
by the value in the SalesAmount textbox. This calculation is performed for each detail
row of the report. You could also use the expression =Fields!Margin.Value/Fields!
SalesAmount.Value to get the same result, but for now, use the ReportItems collection so
you can learn something about its behavior in the upcoming steps.

5. Enter the following expression in the last cell of the table footer:

=Sum(ReportItems!Margin.Value)/Sum(ReportItems!SalesAmount.Value)

Note This expression is not valid, but is introduced here to force an error for you to
look at shortly.

6-2250-7.book Page 123 Tuesday, March 21, 2006 3:45 PM

124 Part II: Authoring Reports

6. Click the Preview tab. Your screen looks like this (although the sequence of errors may
differ):

Note There is no error-checking function in Layout mode. To test an expression, you
must preview the report.

Two messages refer to the use of an aggregate function in a report item. The same mes-
sage displays twice because the expression you just added contains two instances of
ReportItems. Since the textbox is in a table in the report body and not in a page header
and footer, you cannot use the Sum function in its expression.

The other two messages refer to the use of grouping scope with report items. Here the
message displays twice but references the two report items, Margin and Sales Amount,
separately. In this case, the error is caused because the expression belongs to an item
positioned in a summary row but references an item in a detail row. To avoid this error,
the report item expression in this textbox can refer only to another textbox that is in the
table footer.

7. Click the Layout tab, click the Sales Amount cell in the table footer, and then change the
Name property to SalesAmount_Total in the Properties window.

8. Click the Margin cell in the same row and change its Name property to Margin_Total.

9. Enter the following expression for the last cell of the table footer:

=ReportItems!Margin_Total.Value/ReportItems!SalesAmount_Total.Value

6-2250-7.book Page 124 Tuesday, March 21, 2006 3:45 PM

Chapter 5: Working with Expressions 125

This expression uses the summarized value of Margin divided by the summarized Sales
Amount. Importantly, the report item expression refers only to textboxes in the same
grouping scope—the table footer—and does not use the aggregate function. The refer-
enced textbox values for Margin_Total and SalesAmount_Total are already aggregated, so
there’s no need to apply another aggregate function.

10. Click the Sales Amount cell in the table1_Category footer, and then change the Name
property to SalesAmount_Category.

11. Click the Margin cell in the same row and change its Name property to
Margin_Category.

12. Add the following expression to the Margin % cell in the table1_Category Footer:

=ReportItems!Margin_Category.Value/ReportItems!SalesAmount_Category.Value

13. Click the Sales Amount cell in the table1_SubCategory Footer, change the Name prop-
erty to SalesAmount_SubCategory, and then click the Margin cell in the same row and
change its Name property to Margin_SubCategory.

14. Add the following expressions to the Margin % cell in the table1_SubCategory footer:

=ReportItems!Margin_SubCategory.Value/ReportItems!SalesAmount_SubCategory.Value

15. Save the solution, and then preview your report.

The top of your report looks like this:

The margin percentages are now correctly displayed in the report.

Using Aggregate Functions
When you add a field to a table, the group footer rows in the table use the default aggregate
function, Sum, with that field to total the rows in each group. The same function is also used
to calculate a grand total for the table in the table footer. In the report body, an aggregate func-
tion operates on a set of rows defined by an expression, such as a field, and returns a value,

6-2250-7.book Page 125 Tuesday, March 21, 2006 3:45 PM

126 Part II: Authoring Reports

such as a total. Usually, an aggregate function operates on numeric values, but some aggregate
functions work with string values. In the page header and page footer, an aggregate function
can operate only on report item expressions.

Because the expressions in the report body are evaluated when the report is processed, an
aggregate function in the report body has access to the dataset and thus can use a field expres-
sion as an argument. However, expressions in the page header and footer are evaluated after
the report body is processed and before the report is rendered. If you try to use =Sum(Fields!
SalesAmount.Value) in the page footer, the report will not compile. Here’s where a report item
expression comes to the rescue, because it can access information for the processed page and
return a value that is displayed in the rendered page. Thus, you can use =Sum(ReportItems!
SalesAmount.Value) to total the value of all the textboxes labeled SalesAmount on the page.

Reporting Services supports 14 standard aggregate functions, which are shown in the follow-
ing table:

 These functions are typically used in footer rows of a table or a matrix, but can also be used
in free-standing textboxes.

Use this aggregate function To do this

Aggregate Aggregate values as defined by the data provider

Avg Average nonnull numeric values in the set

Count Count values in the set

CountDistinct Count the distinct values in the set

CountRows Count the number of rows in the set

First Get the first value in the set

Last Get the last value in the set

Max Get the highest value in the set

Min Get the lowest value in the set

StDev Find the standard deviation of all nonnull numeric values in
the set

StDevP Find the population standard deviation of all nonnull numeric
values in the set

Sum Total the numeric values in the set

Var Find the variance of all nonnull numeric values in the set

VarP Find the population variance of all nonnull numeric values in
the set

6-2250-7.book Page 126 Tuesday, March 21, 2006 3:45 PM

Chapter 5: Working with Expressions 127

Three miscellaneous functions can be used in detail rows to display a previous row value, the
current row number, or accumulating values. These functions are shown in the following
table:

Even though the Sum aggregation function is added by the Report Designer as you drop a field
into a header or footer row of a table, you can also type an aggregate function directly into the
table—for example, when you need to show cumulative values in the detail rows of a report or
display averages in the footer row. Aggregates can also be used outside a data region in a free-
standing textbox, either in the report body or in the page header or footer. For example, you
might want to show a grand total on the first page of a report or display a page total in the
footer of each page. In the case of nonnumeric data, such as an employee directory, you might
want to show the first and last employee name in a page footer.

Using Aggregate Functions in a Table

When using aggregate functions in a data region, such as a table, you need to consider the
scope of the function. Scope in the context of a data region determines which rows are
included when calculating the aggregated value. Scope can refer not only to a grouping in the
data region, but also to an entire data region or even an entire dataset.

Most aggregate functions use the syntax Function(Expression,Scope), but the RunningValue
function is constructed using the following syntax: RunningValue(Expression,Function,Scope).
In this function, Expression cannot itself contain an aggregate function; Function is the aggre-
gate function to apply (which cannot be RunningValue or RowNumber); and Scope is the name
of a data region or a grouping in a data region and is contained within quotation marks.

In this procedure, you’ll use the RunningValue function to show how many products in a sub-
category contribute to 80 percent of product sales in each subcategory.

Add a running total to the table

1. Click the Layout tab, right-click the Sales Amount column handle, and then click Insert
Column To The Right.

2. Type Cumulative in the new cell in the Category group header (the second row of the
table).

3. Click the Align Right button in the Report Formatting toolbar.

4. Add the following expression to the Cumulative cell in the detail row:

=RunningValue(Fields!SalesAmount.Value,Sum,"table1_SubCategory")

Use this function To do this

Previous Show the value of the expression for the previous row of data

RowNumber Show the current row count in an accumulating count of rows in the set

RunningValue Show the current value in an accumulating aggregation of the set

6-2250-7.book Page 127 Tuesday, March 21, 2006 3:45 PM

128 Part II: Authoring Reports

This expression calculates a running total of SalesAmount that is reset each time the
Scope changes. (In this case, the Scope is the name of the group based on the SubCategory
value.)

5. Save the solution, and then click the Preview tab to verify that the top-left section of your
report looks like this:

Notice that the Cumulative value increases with each detail row in every subcategory
section. The Cumulative value for the last detail row is equal to the subtotal for the sub-
category. Then the Cumulative value is reset to zero and increases with each detail row
in the next group. Because the Cumulative value is related to the Sales Amount column,
you can place a label above the column to better explain what value is accumulating in
the Cumulative column.

In this procedure, you’ll merge the cells in the table header to center the Sales Amount label
above the Actual and Cumulative columns.

Merge cells

1. Click the Layout tab, and then type Actual in the Category Header (the second row) of
the Sales Amount column.

2. Click the Align Right button in the Report Formatting toolbar.

3. Click the Sales Amount header cell in the table header (the first row), press Ctrl, and
click the cell to its immediate right, right-click either of the selected cells, and then click
Merge Cells.

Merging cells is useful for centering text labels over multiple columns in a columnar
data region, such as a table or matrix.

4. Click the Center button in the Report Formatting toolbar to center the text across the
two cells.

6-2250-7.book Page 128 Tuesday, March 21, 2006 3:45 PM

Chapter 5: Working with Expressions 129

The first three columns of the table in the design grid now look like this:

Using Aggregate Functions in a Textbox

Sometimes you might want to display the result of an aggregate function independently of the
data region containing the data used by the function. You can place an aggregate function in
a free-standing textbox and place it anywhere in your report. If you choose to do this, include
a text label, either in a separate textbox or as part of the expression in the same textbox, to
indicate the meaning of the value in the report. When using an expression to concatenate a
string value with a numeric value, like an aggregate, you need to wrap the Format function
around the aggregate function to convert the numeric value to a string and apply the proper
formatting. The syntax for the Format function is Format(Expression, FormatString), where
FormatString is the same string you would use in the Format property.

As stated earlier in this section, the expression used with an aggregate function depends on its
location in the report. When using an aggregate function in the report body, you must use a
field expression. In the report body, the scope of an aggregate function is always a dataset,
which must be specified only when there is more than one dataset in the report. In case you
add a dataset later, get into the habit of including the dataset in the Scope argument to save
edits later. An aggregate function in the page header or footer must instead use a report item
expression. Scope is never used in this context, because the dataset is no longer accessible.

In this procedure, you’ll use the Sum function to show total product sales for all categories in
the report body rather than in a table.

Add a Sum aggregate function to the report body

1. Click the Layout tab, click Textbox in the Toolbox window, and then click the design
grid in the spot just right of the image’s top-right corner.

6-2250-7.book Page 129 Tuesday, March 21, 2006 3:45 PM

130 Part II: Authoring Reports

2. Use the textbox handles to resize the textbox to approximately 2.5 inches wide and 0.25
inches high so the design grid now looks like this:

3. Add the following expression to the new textbox:

=Sum(Fields!SalesAmount.Value,"DataDetail")

Note In this example, only one dataset is in the report, so no Scope argument is
required in the expression. You could enter =Sum(Fields!SalesAmount.Value), but if
you add another dataset to the report later, you will need to modify the expression to
refer to the appropriate dataset in the Scope argument.

4. Click the Preview tab, and then scroll to the right of the report, if necessary.

You can see that the format of the value needs to be fixed and a label should be added
to explain what the value represents. Since the scope of the aggregate function in the
report body is the dataset, the sum represents the total of all product sales in the report.

5. Click the Layout tab, and then modify the expression in the textbox as follows:

="Total Product Sales: "+Format(Sum(Fields!SalesAmount.Value, "DataDetail"), "c0")

This expression is an example that illustrates how to concatenate an aggregate function
with a text label.

6. On the Report Formatting toolbar, click the Italic button.

7. Save the solution and preview your report to confirm that the top looks like this:

Now you can have a grand total for all products in the dataset.

In this procedure, you’ll use the First and Last function to show total product sales for all cat-
egories in the report body.

6-2250-7.book Page 130 Tuesday, March 21, 2006 3:45 PM

Chapter 5: Working with Expressions 131

Add a First and Last aggregate function to the page footer

1. Click the Layout tab, click Textbox in the Toolbox window, click the page footer to the
right of the existing textbox, and then resize the textbox to about 2 inches in width and
0.25 inches in height and position it so its left edge is aligned with the 2” mark on the
horizontal ruler.

2. Click the first cell of the detail row, and then verify that the Name property of this text-
box in the Properties window is Product.

The name of the textbox should have been assigned automatically when you dropped the
Product field into this cell. If for some reason the name is not correct, edit the name now.

3. Click the textbox that you added to the page footer and enter the following expression:

=First(ReportItems!Product.Value)

This expression will find the name of the product in the first detail row on this page and
display the result in the page footer.

4. Click the textbox with the First aggregate function, and then click the Align Right button
on the Report Formatting toolbar.

5. Click the same textbox, and then, while pressing Ctrl, drag the cell to the right to make
a copy of the textbox whose left edge aligns with the right edge of the original textbox
and aligned with the 4” mark on the horizontal ruler.

6. Edit the second textbox containing the aggregate function so the expression now looks
like this:

=" – " +Last(ReportItems!Product.Value)

This expression includes a dash as a visual separator between the first and last value dis-
played in the footer. Reporting Services doesn’t let you use two report item expressions
in the same textbox, but you can place two textboxes side by side to get the same effect.

7. Click the textbox with the Last aggregate function, and then click the Align Left button
in the Report Formatting toolbar.

8. Save the solution and preview the report, scrolling to the bottom of the page.

The bottom of the page looks like this:

6-2250-7.book Page 131 Tuesday, March 21, 2006 3:45 PM

132 Part II: Authoring Reports

Using Expressions to Change an Object’s Behavior
Even though expressions are often used to display the results of calculations in a report, you
can also use them in report item properties to control appearance, such as font color. You can
even use expressions to control behavior, such as sort order. You can set many of the proper-
ties in the Properties window by using an expression instead of a single value. This feature of
Reporting Services provides endless flexibility in designing your reports.

Not every report will need to include expressions to change its appearance or behavior. How-
ever, in some situations, you’ll find this capability useful. For example, you can find potential
problem areas (or highlight areas that are performing well!) by using an expression to change
the color of a field when the value falls below a certain threshold instead of using a value in
the Color property of a report item.

In addition to using expressions to modify the appearance of a report item, you can use
expressions to alter the sort order of rows or groups in a table. If you want to sort rows by a
derived value rather than by an existing value in the row, you can easily add the expression to
the sort definition.

Using Conditional Formatting

Conditional formatting is used to change the font or background color of an item based on the
result of evaluating a Boolean expression, which returns either True or False. Often, condi-
tional formatting is used to identify values, known as exceptions, that fall outside a specified
range to make them easier to locate in a big report. You can also use conditional formatting to
create rows with alternating colors.

Conditional formatting is commonly implemented using the IIf function, which evaluates an
expression to determine whether it’s true or false. For example, an expression to change the font
color when the margin expression is below 15 percent might look like this: =IIf(ReportItems!
Margin_Percentage.Value<0.15, "Red", "Black"). The first argument of the IIf function,
Margin_Percentage.Value<0.15, is the condition that is evaluated. If the value is true, the second
argument, "Red" in this case, is the result of the expression and becomes the value of the Color
property. If the condition is false, the third argument, "Black", becomes the value of the Color
property.

In this procedure, you’ll use conditional formatting to display detail rows using red text when-
ever the margin percentage is below 15 percent.

Highlight exceptions

1. Click the Layout tab, click the Margin % cell in the detail row, click Expression in the
Color property list box, and then replace the default expression with the following
expression:

=IIf(Me.Value<0.15, "Red", "Black")

6-2250-7.book Page 132 Tuesday, March 21, 2006 3:45 PM

Chapter 5: Working with Expressions 133

Tip Use the special word Me to refer to the current item so you can reuse the same
expression in several textboxes. If you don’t, you’ll have to create a unique expression for
each textbox, even when the expressions are performing the same task. For example, if
you wanted to conditionally format the Margin Percentage textbox, you would use
=IIf(ReportItems!Margin_Percentage.Value<0.15, "Red", "Black"), but you
would need to use =IIf(ReportItems!Margin_Percentage_Total.Value<0.15,
"Red", "Black") to conditionally format the Margin_Percentage_Total textbox.
Although both of these expressions are valid, your work is simplified by using Me.

2. Copy the expression to the clipboard, and then click OK to close the Edit Expression
dialog box.

3. Click the Margin % cell in the table1_SubCategory Footer, press the Ctrl key, click the
Margin % cells in the table1_Category footer and the table footer, and then paste the
copied expression into the Color property in the Properties window to update all three
cells in one step.

4. With the Margin % cell in the table footer still selected, click Expression in the Color
property list box and edit the expression to replace Black with White, as shown here:

=IIf(Me.Value<0.15, "Red", "White")

5. Click OK to close the Edit Expressions dialog box.

6. Save your report, and then check the results by clicking the Preview tab.

Confirm that the Margin % for AWC logo cap and the Cap SubCategory Total are both
6.9% and that they are displayed as red text.

Sorting

The sort order of rows in the table is determined by the order of rows in the dataset. You can
use an ORDER BY clause in your query if you want to control the sort order on the database
server. Alternatively, you can use a field expression for setting the sort order in Table Proper-
ties to change the query’s default sort order using the Report Server. If you need to sort rows
by a value that is not in the dataset, you can use an expression.

Specifying a sort order in Table Properties affects only the order of the detail rows. If you
want to sort the groups, just right-click a group header or footer handle, and then click Edit
Groups to access the Grouping And Sorting Properties dialog box. On the Sorting tab, you
can select a field expression or enter your own expression to define a sort order for each
level of grouping.

In this procedure, you’ll sort the detail rows using an expression that calculates the margin
percentage.

6-2250-7.book Page 133 Tuesday, March 21, 2006 3:45 PM

134 Part II: Authoring Reports

Sort detail rows using an expression

1. Click the Layout tab; click the table to display the handles; right-click the table handle,
which is located in the top-left corner; and then click Properties.

2. In the Table Properties dialog box, click the Sorting tab, select <Expression…> in the
Expression drop-down list, and then replace the default expression with the following
expression:

=Sum(Fields!Margin.Value)/Sum(Fields!SalesAmount.Value)

Note You can’t use ReportItems!Margin.Value in this expression because the Margin
textbox is in a detail row, which is not in scope for table properties. Remember that when
using the ReportItems collection, you can reference only those report items that are on
the same level of grouping or higher.

3. Click OK to close the Edit Expression dialog box.

4. Click Descending in the corresponding Direction drop-down list.

The Table Properties dialog box looks like this:

5. Click OK to close the Table Properties dialog box.

6-2250-7.book Page 134 Tuesday, March 21, 2006 3:45 PM

Chapter 5: Working with Expressions 135

6. Click the Preview tab to verify that your report looks like this:

The detail rows are now sorted in descending order of margin percentage, but only
within each subcategory group. Notice that on the first page of the report, the subcate-
gories are still sorting in the order found in the dataset (the default sort order).

7. Save and close the solution.

Chapter 5 Quick Reference

To Do this

Add a calculated field Right-click in the Datasets window, and then click Add. Enter a name
for the calculated field and click the Calculated Field option. Enter an
expression directly into the Calculated Field textbox or click the Ex-
pression button to open the expression editor.

Insert a row or column in a table Right-click the row handle, and then click either Insert Row Above or
Insert Row Below.

or

Right-click the column handle and then click either Insert Column To
The Left or Insert Column To The Right.

Copy an expression without copying
textbox formatting

Click the textbox containing the expression to copy; press Enter to se-
lect the expression, and then press Ctrl+C to copy.

Test an expression Click the Preview tab.

Merge cells Click the cells to be merged. You can right-click and then click Merge
Cells, or click the Merge Cells button in the Layout toolbar.

Use an aggregate function Use one of the following:

Function(Expression,Scope) for a standard aggregation.

or

RunningValue(Expression,Function,Scope) for a running
value aggregation.

or

RowNumber(Scope) for a running count of rows.

6-2250-7.book Page 135 Tuesday, March 21, 2006 3:45 PM

136 Part II: Authoring Reports

Apply conditional formatting Use the IIf function to test for a condition and assign a property value
for true and false conditions. For example, use the following expres-
sion to set the Color property of a textbox: =IIf(Me.Value<0.15,
"Red", "Black")

Sort table rows Use an ORDER BY clause in the dataset query.

or

Click the table, click the table handle in the top-left corner, and then
click Properties. In the Table Properties dialog box, click the Sorting
tab, and then click an expression in the Expression list box. If you click
<Expression…> in this list box, you can open the expression editor to
enter your own expression if you want to sort by a value that is not
explicitly contained in the dataset.

To Do this

6-2250-7.book Page 136 Tuesday, March 21, 2006 3:45 PM

137

Chapter 6

Organizing Data in Reports

After completing this chapter, you will be able to:

■ Represent data in a crosstabular form by using a matrix.

■ Represent data graphically by using a chart.

■ Represent data in a flexible layout by using a list.

In the previous chapter, you finished your report by adding expressions to enhance the informa-
tion in it and to affect the appearance and behavior of report items. In this chapter, you expand
your report design skills using the other data regions supported by Reporting Services. You
work with a matrix data region to see how both rows and columns can dynamically adjust to the
dataset. You also add a chart data region to a report so you can see how multiple data regions
can be combined in a single report and how to manipulate chart properties. To learn how to take
advantage of a free-form, repeating data region, you use a list to create grouped sets consisting of
a matrix and chart.

Understanding Data Regions
Although a table data region can accommodate most of your reporting needs, you have several
other ways to organize data in a report, which you explore in this chapter. Before examining
the matrix, chart, and data regions in greater depth, you will compare these data regions with
one another and with a table to better understand the general similarities and differences
among them. You will also encounter some typical applications of these data regions to help
you decide which will be appropriate for your next reporting project.

Comparing Types of Data Regions

As you learned in Chapter 3, “Building Your First Report,” a data region is a structure in the
report in which data from the dataset is arranged. A data region differs from other report
items, such as a textbox or a rectangle, because it repeats data. For example, in the table you
built in Chapter 4, “Developing Basic Reports,” you defined properties by row, such as the
detail row, which were repeated for each record in the dataset.

The following table highlights the differences between the four data regions supported by
Reporting Services. You already know that a table data region displays the same number of
columns every time the report is executed, but as data changes in the source, the number of
rows can vary. In the Product Sales and Profitability report, for example, as new products are

6-2250-7.book Page 137 Tuesday, March 21, 2006 3:45 PM

138 Part II: Authoring Reports

sold by Adventure Works, additional rows of data are added to the report. Grouping isn’t
required in a table, but you did add two grouping levels to the table, Category and SubCate-
gory, to break the product detail rows into smaller sets for which subtotals could be calcu-
lated. In this chapter, you work with a matrix, a list, and a chart.

Using Data Regions

When designing your report, you need to select a data region that is appropriate for the data
you expect to be returned in the dataset. Most of the time, a table will probably satisfy your
requirements. However, if you want to use data from the query, such as month names, in the
column headers, you need to use a matrix data region. If you need more flexibility in position-
ing report items, rather than using the fixed row and column structure of a table or matrix,
you can use a list.

You also need to consider whether to use multiple data regions. You can nest data regions to
repeat the same data region multiple times by placing a list within a list or a table within a
list. This is a great way to design one table that is reused many times in the same report. For
example, you could use a separate table for each salesperson when reporting sales data. If
you wanted to present alternate views of data side by side—which is sometimes the best way
to communicate information—you could use a table with detail data and a chart with aggre-
gated data.

Using a Matrix
A matrix data region can be compared to a PivotTable or crosstab-style report, because the
number of rows as well as the number of columns adapt dynamically. The number of rows or
columns can change as the results of the query change or as selections are made in the report
to focus attention on certain data. As in a table, the detail rows of a matrix come from the
report’s dataset. However, a table has the same number of columns every time the report is
executed. The number of columns in a matrix, by contrast, can increase or decrease depend-
ing on the query results.

Data region Description Grouping levels Group on

Table Fixed number of columns with
variable number of repeating rows

From zero to many Rows

Matrix Fixed crosstab with variable number
of repeating rows and columns of
aggregate data only

From zero to many Rows or columns

List Freeform layout of repeating report
items

One List

Chart Graphical display of dataset of
aggregate data only

Category, Series Dependent on
chart type

6-2250-7.book Page 138 Tuesday, March 21, 2006 3:45 PM

Chapter 6: Organizing Data in Reports 139

Adding a Matrix Data Region

Adding a matrix data region is as easy as adding any other data region. In the Toolbox win-
dow, click Matrix, and then click the report body to position the top-left corner of the matrix.
Because the rows and columns of the matrix expand according to the dataset, report items
below or to the right of the matrix shift when the matrix adjusts.

Tip If, for some reason, the query returns no data to the dataset, the data region is not ren-
dered. You can choose to display a textbox with a message by entering a value in the NoRows
property of the data region. This value, when displayed, will use the same style properties, such
as Color and Font, that are defined for the data region. Be sure to supply a value for this prop-
erty if you want something to appear on the report when no data is returned.

In this procedure, you’ll create a new report containing a matrix data region that displays
SalesAmount.

Add a simple matrix

1. Start SQL Server Business Intelligence Development Studio and open the solution My
Adventure Works that you saved in the C:\Documents and Settings\<username>\My
Documents\Microsoft Press\rs2005sbs\Workspace\My Adventure Works folder.

Note If you skipped Chapter 5, “Working with Expressions,” open the solution My
Adventure Works in the C:\Documents and Settings\<username>\My Documents
\Microsoft Press\rs2005sbs\Answers\chap05\My Adventure Works folder.

2. In Solution Explorer, right-click the Product Sales and Profitability.rdl report, click
Copy, click the Reports folder, and then press Ctrl+V to paste a copy of the report into
the folder.

3. Right-click the new report, click Rename, and then type a new name for the report:
Product Sales and Profitability by Month.rdl.

4. Double-click the Product Sales and Profitability by Month.rdl report in Solution
Explorer to display the report in the Document window.

5. Click the table in the new report to display the handles, right-click the table handle in
the top left-corner, and then click Delete.

Tip If you plan to use the same dataset in another report, rather than start with a
blank report, copy an existing report, and then delete data regions from it. Using this
technique, you can also preserve the overall appearance with minimal effort for a con-
sistent look between reports.

6-2250-7.book Page 139 Tuesday, March 21, 2006 3:45 PM

140 Part II: Authoring Reports

6. In the Toolbox window, click Matrix, and then click the left edge of the design grid just
below the textbox containing the report title.

Your screen looks like this:

Notice there are three main areas of the matrix: Rows, Columns, and Data. These are
drop zones for fields from the dataset.

7. In the Datasets window, click SalesAmount and drag to the Data area of the matrix.

Notice that the Sum function was added to the expression.

Note A matrix data region does not have a detail row and always aggregates numeric
data based on the intersection of the rows and columns. The default aggregation func-
tion is Sum, but you can change this if you need to use a different aggregation.

8. In the Properties window for the SalesAmount textbox, enter C0 as the Format property.

Grouping Rows

You create dynamic row groups using fields in the dataset. Because both the number of rows
in each group and the value displayed as the group row header are determined by the dataset,
the table grows or shrinks as the dataset increases or decreases. The group row header cell
appears, by default, to the left of the numeric value that appears in the Data area of the matrix.
You can nest dynamic rows to create multiple grouping levels for rows. The result is similar to
the grouping that you added to the table in Chapter 4.

6-2250-7.book Page 140 Tuesday, March 21, 2006 3:45 PM

Chapter 6: Organizing Data in Reports 141

In this procedure, you’ll add Category and SubCategory as row groups in the matrix.

Add row groups

1. Drag Category from the Datasets window and drop it in the Rows area of the matrix.

2. Drag SubCategory and drop it in the same cell, placing the mouse pointer on the right
side of the cell as you drop the field so that a new column appears between Category
and SalesAmount, as shown here:

If the drop zone already contains a field, you can still drop another field into the zone.
Instead of inserting a column to the right, you can hold the mouse pointer over the left
portion of the Row drop zone, and then drop the field to insert a new column to the left
of the existing cell.

3. Click the =Fields!Category.Value cell, and then click the Bold button on the Report
Formatting toolbar.

4. Save the solution, and then preview the report.

The top of the report looks like this:

Sorting Rows

Sorting rows in a matrix is similar to setting sorting properties for a table. You can sort by a
field value, or you can add your own expression to control sort order.

In this procedure, you’ll edit the matrix properties to apply sorting to each row group.

Define sort order

1. Click the Layout tab, right-click the matrix handle in the top-left corner, and then click
Properties.

6-2250-7.book Page 141 Tuesday, March 21, 2006 3:45 PM

142 Part II: Authoring Reports

2. In the Matrix Properties dialog box, click the Groups tab, click matrix1_Category in the
Rows pane, and then click Edit.

3. Click the Sorting tab, click =Fields!Category.Value in the Expression drop-down list,
and then click OK to close the Grouping And Sorting Properties dialog box.

4. Click matrix1_SubCategory, and then click Edit.

5. Click the Sorting tab, click =Fields!SubCategory.Value in the Expression drop-down
list, and then click OK twice to close all dialog boxes.

6. Save the report, and then preview the report, which now looks like this:

By default, a matrix shows values for only the lowest visible level. In this example, the
lowest visible level is the SubCategory group. This report resembles a table. It has yet to
show off the power of a matrix because no column groups are defined.

Grouping Columns

A dynamic column group is one of the main differentiators between a matrix and a table.
Recall that a table has dynamic rows, but a fixed number of columns. Dynamic column
groups work like dynamic row groups, but are laid out from left to right across the page
instead of from top to bottom. Also, like dynamic rows, both the number of rows and the value
displayed as the column header are determined by the dataset. As with row groups, you can
nest dynamic columns to create multiple grouping levels for columns.

Tip If you want some of the data columns to appear to the left of the row headers, use the
GroupsBeforeRowHeaders property of the matrix. This property uses an integer value to control
the number of column groups that are displayed in front of the row header column.

In this procedure, you’ll add a column grouping to the matrix to display Sales Amount and
Order Quantity by month.

6-2250-7.book Page 142 Tuesday, March 21, 2006 3:45 PM

Chapter 6: Organizing Data in Reports 143

Adding Column Groupings

1. Click the Data tab, and then change the WHERE clause of the query to the following:

WHERE Year = 2003 and MonthNumberOfYear IN (1,2,3)

Now the query will return data for January, February, and March of 2003.

2. Click the Layout tab, right-click the matrix handle, and then click Properties.

3. In the Matrix Properties dialog box, click the Groups tab, and then click Add in the Col-
umns pane.

The Grouping And Sorting Properties dialog box is displayed.

Note You can also drag a field from the Datasets window to the Columns drop zone
to add a column. However, by adding a column using the Matrix Properties dialog box,
you can also set group properties for the new column right away.

4. Replace the default name of the group by typing matrix1_Month.

5. Click =Fields!Month.Value in the Expression drop-down list to define the expression to
be used to create a column group.

6. Click the Sorting tab, click =Fields!MonthNumberOfYear.Value in the Expression drop-
down list, and then click OK.

Tip When displaying month names in a report, your query should also include a
numeric value of the month that you can use to sort the months in the correct order.

The Matrix Properties dialog box looks like this:

6-2250-7.book Page 143 Tuesday, March 21, 2006 3:45 PM

144 Part II: Authoring Reports

7. In the Matrix Properties dialog box in the Columns pane, click the matrix1_Month
group, click the Up button to move matrix1_Month above matrix1_ColumnGroup1,
and then click OK. The matrix now looks like this:

The matrix_ColumnGroup1 group is a static group that consists of a set of columns that
will be displayed for each column group. You’ll work with the static group later in this
chapter. In this case, the static group contains the Sales Amount column. By moving
matrix1_Month above the static group, the name of the month is displayed first.

8. Save and then preview your report, which now looks like this:

Notice that the month names are not centered above each column. You’ll fix the position
of the month names in a later procedure.

Your report can now expand vertically as more products are sold by Adventure Works,
and horizontally if the query is modified to include more months. You’ll learn how to
make the query more dynamic in Chapter 7, “Building Advanced Reports,” so you don’t
have to change the query string each time you want to view different data in the report.

Using Subtotals in a Matrix

When working with a single row group, the numeric data in each column is already aggre-
gated, so a subtotal is not necessary. However, when working with multiple groups, you might
want to add subtotals to see totals by group. Working with subtotals in a matrix is much dif-
ferent from working with subtotals in a table. In a matrix, the same cell is used to manage the
properties of the subtotal label and the numeric values that are displayed in the subtotal row.

6-2250-7.book Page 144 Tuesday, March 21, 2006 3:45 PM

Chapter 6: Organizing Data in Reports 145

You turn on subtotals by selecting the Subtotal command from the shortcut menu for the
group heading cell. You format subtotal data values by selecting a small triangle in the corner
of the subtotal cell.

In this procedure, you’ll add a subtotal to the SubCategory and Category groups.

Add subtotals

1. Click the Layout tab, right-click the SubCategory cell, and then click Subtotal to add a
new row to the matrix, which now looks like this:

The result of this subtotal will be the sum of each SubCategory within a Category. In
effect, it’s really the Category total, which you’ll see when you preview the report.

2. Click the Total cell, and then click Bold on the Report Formatting toolbar.

Now the label for the subtotal is formatted, but you still have to perform additional steps
to format the subtotal values.

3. If necessary, open the Properties window, and then click the small green triangle in the
top-right corner of the new Total cell.

The Properties window now displays Subtotal in the report items list box.

4. On the Report Formatting toolbar, click the Bold button.

The subtotal values are now formatted, even though you can’t see the new format in the
matrix.

5. Right-click the Category cell, and then click Subtotal.

Another Total cell appears in the matrix. Because Category is the highest level of the row
groups, this subtotal is the equivalent of a grand total.

6. Format the Category Total cell by using the Report Formatting toolbar to set the Font
Size to 12, the Background Color to Black, and the Foregound Color to White.

7. Click the green triangle in the Category Total cell to format the values, and then use the
Report Formatting toolbar to set the Font Weight to Bold, the Font Size to 12, the Back-
ground Color to Black, and the Foreground Color to White.

8. Add a subtotal for months by right-clicking the =Fields!Month.Value cell, and then
clicking Subtotal.

9. Click the Month Total cell, and then Bold on the Report Formatting toolbar.

6-2250-7.book Page 145 Tuesday, March 21, 2006 3:45 PM

146 Part II: Authoring Reports

10. Save and preview the report, which now looks like this:

Notice that the SubCategory totals are bold, the Category totals are bold, and the colors
are reversed. You might need to scroll to the bottom of the report to see the Category
totals.

Using Static Rows and Columns in a Matrix

You can also add static rows and columns, called Static Groups, to the matrix. By having such
rows or columns, you can have multiple aggregations for a single field. For example, your
matrix currently displays the aggregated Sales Amount, but you could also add the aggregated
Order Quantity. If you have column groups in your report, each column group will display the
set of static columns, that is, Sales Amount and Order Quantity. Static columns in a matrix are
similar to the columns in a table data region because there is a fixed number of static columns
per column group.

In this procedure, you’ll add the OrderQuantity field to the matrix as a static column.

Add static columns

1. Click the Layout tab, right-click the SalesAmount textbox, and then click Add Column.

The matrix now looks like this:

To the right of SalesAmount, another column is added as a static column to the group.
Notice that a column label is also automatically added to the SalesAmount column.

6-2250-7.book Page 146 Tuesday, March 21, 2006 3:45 PM

Chapter 6: Organizing Data in Reports 147

Note To add a static row, right-click a matrix textbox, and then click Add Row. As with
a static column, a static row will repeat with each row group.

2. In the Datasets window, click OrderQuantity and drag the field to the new data column.

3. Change the Format property of the Order Quantity textbox to N0.

4. Click the column handle between Sales Amount and Order Quantity columns, and then
drag to make the Sales Amount column approximately 1.25 inches wide.

5. Drag the right side of the Order Quantity column handle to extend its width also to
approximately 1.25 inches.

6. Click the =Fields!Month.Value cell, and then click Center on the Report Formatting
toolbar to center the textbox value across the Static Group.

7. Click the Month Total cell, and then click Center on the Report Formatting toolbar to cen-
ter the subtotal label across the Static Group that isn’t visible now but will be rendered.

8. In the first cell of the top row of the matrix, type Product.

9. Click all three cells in the top row of the matrix while pressing Ctrl, and then use the
Report Formatting toolbar to set the Font Weight to Bold, the Font Size to 12, the Back-
ground Color to Black, and the Foreground Color to White.

10. Save the report and preview to verify that the report now looks like this:

You can scroll to the right and down to see all the rows and columns on this page. Notice
that each month, as well as the month subtotal column, has a column for Sales Amount
and Order Quantity.

6-2250-7.book Page 147 Tuesday, March 21, 2006 3:45 PM

148 Part II: Authoring Reports

Using a Chart
You use a chart to display data graphically. Although a chart cannot contain other report
items, such as a textbox, it does have many attributes you must manage. Reporting Services
supports a wide variety of chart types: column, bar, pie, line, doughnut, area, scatter, bubble,
and stock. Standard formatting options allow you to change the chart appearance of the plot
and chart areas, the chart axes, and the legend. In addition to choosing colors and styles from
a palette, you can use expressions to incorporate conditional formatting into your chart. Many
of the chart properties that you might need to change are not accessible in the Properties win-
dow, but they are managed in a Chart Properties dialog box associated with the chart.

A chart can be placed into a report all by itself, but many users like to see the data that sup-
ports the chart as a separate data region. You can position a chart above, below, or on either
side of a data region. At minimum, you need to define a data value to display in the chart,
which you can then segment into category and series groups if you like. Reporting Services
provides plenty of formatting options and property settings to enhance the appearance of
the chart.

Adding a Chart

You can click Chart in the Toolbox window and then click the design grid to add a chart of a
fixed size to your report body, or you can drag the mouse pointer across the design grid to set
a specific size for the chart. However, whenever you’re combining data regions, regardless of
type, be sure to allow for the vertical expansion of a table, matrix, or list, and the horizontal
expansion of a matrix. You might want to place a chart above a data region rather than below
it or to its side to avoid problems with placement.

In this procedure, you’ll add a chart to your report to display with the matrix.

Add a chart to a report

1. In Solution Explorer, right-click the Product Sales and Profitability by Month.rdl report,
click Copy, click the Reports folder, and then press Ctrl+V to paste a copy of the report
into the folder.

2. Right-click the new report, click Rename, and then type a new name for the report:
Product Sales and Profitability Chart.rdl.

3. Double-click the Product Sales and Profitability Chart.rdl report to open the report in
the Document window.

6-2250-7.book Page 148 Tuesday, March 21, 2006 3:45 PM

Chapter 6: Organizing Data in Reports 149

4. Click the matrix to display the handles, and then drag the matrix to a lower position in
the report body so the top of the matrix is at about 3.5 inches on the vertical ruler.

The design grid is not large enough for you to move the top of the matrix to the 3.5-inch
mark, but you can move the matrix there in two drag operations by dragging the matrix
as far as you can. The design grid will expand vertically to accommodate the matrix, and
then you can drag the matrix into position. The additional space will give you more
room in the report for working with a chart.

5. In the Toolbox window, click Chart, and then click to the leftmost part of the body just
under the report title and above the matrix to place a fixed-size chart in the report body.

6. In the Properties window, change the Width property of the new chart1 report item to
6in, and then change the Height property to 2in.

The screen looks similar to this:

Adding Values and Column Groups to a Chart

A chart must include at least one value. A value is the numeric expression represented by a
position in a chart, such as a point in a line chart; or by size, such as the length of a bar or the
size of a bubble. Values can be grouped by categories, which are basically labels for the values
(like a row header). These category groups can be nested, which allows you to break groups
down into subgroups, such as years and quarters.

6-2250-7.book Page 149 Tuesday, March 21, 2006 3:45 PM

150 Part II: Authoring Reports

In this procedure, you’ll add SalesAmount as the chart’s value and Year and Month as its cate-
gory groups.

Add fields to the chart

1. In the Datasets window, click the SalesAmount field and drag it to the area located above
the chart labeled Drop Data Fields Here.

2. Drag the Year field from the Datasets window to the area located below the chart labeled
Drop Category Fields Here.

3. Drag the Month field to the same area.

4. Save and then preview the report.

The chart looks like this:

Take a look at how the category groups are arranged. The first group you added, Year, is
displayed as the outermost grouping and includes brackets to indicate how it relates to
the next grouping level, Month. If the dataset included an additional year, you would see
the second year as another group in the chart.

Grouping Data by Series

A series group adds more information to the report by differentiating the displayed values by
yet another group. For example, if your report has category groups for year and quarter, you’ll
see a separate value in the report for each year and quarter available in the dataset. A series
group further subdivides the values by using different colors for the members of the series. So,
to continue the example, for a single quarter of a particular year, you can see several values for
that quarter, such as a value for each employee’s sales. The chart legend is used to map the
series color with each series member.

In this procedure, you’ll add a series group for SubCategory.

6-2250-7.book Page 150 Tuesday, March 21, 2006 3:45 PM

Chapter 6: Organizing Data in Reports 151

Add a series group

1. Click the Layout tab, right-click the chart, and then click Properties. The Chart Proper-
ties dialog box is displayed:

2. Click the Data tab, and then click Add to the right of the Series Groups box.

3. In the Grouping And Sorting Properties dialog box, select =Fields!SubCategory.Value
in the Expression drop-down list.

The Series Group is generated dynamically from the SubCategory field in the dataset
each time the report is rendered.

4. Select =Fields!SubCategory.Value in the Label drop-down list.

The Report Designer uses the label that you specified in the Grouping and Sorting Prop-
erties dialog box for the series group. The label doesn’t have to be the same value used
to create the series group.

5. Click the Sorting tab, select =Fields!SubCategory.Value in the Expression drop-
down list, and then click OK. Keep the Chart Properties dialog box open for the next
procedure.

6-2250-7.book Page 151 Tuesday, March 21, 2006 3:45 PM

152 Part II: Authoring Reports

The Series Group sorts the SubCategory values in alphabetical order. The Chart Proper-
ties dialog box now looks like this:

Notice that as you set properties, a generic preview is updated in the Chart Properties
dialog box, which helps you see the impact of your changes without previewing the
report. Because the preview uses sample data, the chart you see here is just a guideline
to illustrate the current property settings.

Adding a Chart Legend

A chart legend describes the values used in your report. If a series group is not added to the
chart, you might want to hide the chart legend. You have complete control over its location
and appearance.

In this procedure, you’ll move the chart legend and format the legend’s font text.

Format the chart legend

1. Click the Legend tab.

The buttons in the Position area are used to position the chart legend relative to the
chart.

2. Click the top button in the right column of the Position area of the dialog box to align
the legend at the top-right corner of the chart.

6-2250-7.book Page 152 Tuesday, March 21, 2006 3:45 PM

Chapter 6: Organizing Data in Reports 153

The Chart Properties dialog box now looks like this:

3. Click Legend Style.

The Style Properties dialog box is displayed:

You can use this dialog box to select a font and to set font size, color, and other style
properties. The dialog box also includes tabs for specifying border, line, and fill proper-
ties. Notice that every property has an Expression button that allows you to enter a con-
ditional expression to set a property value.

4. Select 8pt in the Size drop-down list, and then click OK to close the Style Properties dia-
log box.

5. Click OK to close the Chart Properties dialog box and apply the property changes.

6-2250-7.book Page 153 Tuesday, March 21, 2006 3:45 PM

154 Part II: Authoring Reports

6. Save the report, and then preview it to confirm the chart now looks like this:

For each month, there is now one column for each member of the series group for which
a value exists in that month. The chart legend shows the color assigned to each SubCat-
egory. Now, you can continue to refine the chart’s appearance by changing some chart
properties.

Setting Chart Properties

The Properties window for the chart data region contains the standard background color, bor-
der, and size properties that are associated with the other data regions. However, most of the
properties that affect the appearance and behavior of the chart are accessible only in the Chart
Properties dialog box. To open the Chart Properties dialog box, you right-click the Chart, and
then click Properties.

If you’ve worked with charting in other applications, most of these properties should be famil-
iar. On the General tab, you can specify a name for the chart for reference in expressions and
a title to be displayed in the rendered chart. You can also select from a variety of chart types
and subtypes, which are alternate versions of a chart type. You can change style properties for
anything you see in the chart: the chart area, the plot area, data values, axis titles, and labels.
You can even apply 3-D effects to the chart, if desired.

In this procedure, you’ll format the chart.

Format the chart

1. Click the Layout tab, right-click the chart, and then click Properties.

Take a look at the chart type options, but leave the default chart type. In this dialog box,
you can also set the Chart Area and Plot Area styles.

2. Click the Y Axis tab and type C0 in the Format Code box.

3. In the Title box, type a label for the Y axis: Sales.

4. Click the Style Properties icon next to the Title box, click 8pt in the Size drop-down list,
and then click OK.

6-2250-7.book Page 154 Tuesday, March 21, 2006 3:45 PM

Chapter 6: Organizing Data in Reports 155

5. Click the 3D Effect tab, select the check box to enable the 3-D settings, select the Cylin-
der check box, and then move the sliders to change the settings as follows:

6. Click OK.

7. Save and preview the report.

The chart now looks like this:

There are, of course, many other properties you can change to make a really nice-looking
chart. The best way to learn about them is to experiment by observing the effect of dif-
ferent property settings on your chart. However, remember that the intent of a chart is to
convey information. Most users are satisfied with simple chart effects and won’t use a
report if the chart is too busy or too complicated to decipher.

Using a List
When you use a list, you can combine different types of report items in an unstructured arrange-
ment within the data region. This type of data region repeats each row from a dataset, just like a
table or matrix, but has more flexibility. Instead of arranging data in strict rows and columns,
you can place textboxes anywhere you want within the data region, regardless of whether your
data is dynamic or static. You can even reproduce a columnar look to simulate a table, but you’ll
spend more time getting report items lined up properly if you do this with a list.

The columnar format of the table and matrix data regions makes aligning data easy. However,
other than offering the Padding property, which allows you to shift text away from the edges of
the column, this format doesn’t provide you with much flexibility when arranging data. Using a
list, you can arrange report items freely. You can add a grouping level to the list to define how the
report items in the list will repeat. You can also nest other data regions in a list, including nesting
a list within a list, to take advantage of repeating data regions. Consider these options as just a
starting point for using a list, because its free-form nature gives you unlimited possibilities.

Setting Value

Horizontal rotation 5°

Perspective 0%

Wall thickness 10%

Vertical rotation 0°

6-2250-7.book Page 155 Tuesday, March 21, 2006 3:45 PM

156 Part II: Authoring Reports

Adding a List

You add a list like you add a chart. You can click List in the Toolbox, and then click the design
grid to add a list of a fixed size; or, you can drag the mouse pointer across the design grid to
create a list of a specific size. The list looks just like a rectangle that is waiting for you to put
report items inside it. The difference between a list and a rectangle is that a list repeats for each
row of its data set or group when the report is rendered, whereas a rectangle does not repeat.
You can also add a list to a report that already contains report items. After adding a list to the
design grid, you can drag existing report items into the list.

In this procedure, you’ll create a new report to which you add a list data region and associate
the data region with a dataset.

Add a list

1. In Solution Explorer, right-click the Product Sales and Profitability Chart.rdl report,
click Copy, click the Reports folder, and then press Ctrl+V to paste a copy of the report
into the folder.

2. Right-click the new report, click Rename, and then type a new name for the report:
Product Sales and Profitability List.rdl.

3. Double-click the Product Sales and Profitability List.rdl report in Solution Explorer to
display the report in the Document window.

4. Resize the Document window so you can see the full width of the chart. You might need
to close some Visual Studio windows, which you can open later using the View menu.

5. Change the Height property to 10in in the Size category of the Body object in the Prop-
erties window.

You won’t really need all this space for the finished report, but the design grid is now
taller, which gives you more room to work with.

6. Click the matrix, click the matrix handle to select the matrix, and then, while pressing
the Ctrl key, click the chart to select both report items.

7. Drag the report items down so that the top of the chart is at the 6-inch mark on the ver-
tical ruler.

8. Click List in the Toolbox window, and then place your mouse pointer just below the
bottom-left corner of the report title textbox. Click to create a list of a fixed size.

9. In the Properties window, change the Width property to 7.5in and the Height property
to 4in.

10. In the Properties window, scroll to find the DataSetName property, and then click Data-
Detail in the property’s list box.

6-2250-7.book Page 156 Tuesday, March 21, 2006 3:45 PM

Chapter 6: Organizing Data in Reports 157

Note Each data region is associated with a single dataset. In previous procedures, the
DataSetName property was updated automatically for you when you added the first
field from a dataset to a table or a matrix. However, you need to set this property man-
ually when you add a list to your report. Regardless of the data region, however, if you
change the dataset name or remove a dataset from the report, you will need to update
the DataSetName property; otherwise, the report will not render.

Grouping and Sorting a List

A list can display detail rows or a single grouping level, but not both. Further, a list can have
only one level of grouping. (As you learn later in this chapter, you can work around that limi-
tation by nesting a list within a list.)

In this procedure, you’ll group data in the list by Category.

Add a grouping level

1. In the Properties window, with list1 selected, click the button with three dots (the Ellip-
sis button) in the Grouping property.

2. Replace the default name of the group with list1_Category.

3. Click =Fields!Category.Value in the Expression drop-down list.

As mentioned earlier, a group in a list works the same way as a group in a table. The dif-
ference is that a table can have many groups, whereas a list can have only one group.

4. Click the Sorting tab, click =Fields!Category.Value in the Expression drop-down list,
and then click OK.

The rows in this list will sort alphabetically by Category. At this point, however, a report
preview will not render the list, since fields have not yet been added to the list.

Using Fields in a List

Fields in a free-standing textbox can be used anywhere in a list. Just drag the field from the
Datasets window and position the textbox in the desired position. When you add a numeric
field to a list that has grouping applied, the Sum function is automatically included in the field
expression.

In this procedure, you’ll add Category to the list to serve as a label.

Add a field to the list

1. In the Datasets window, click Category, drag it to the top-left corner of the list, and then
drag the right side of the new textbox until it is approximately 2 inches wide.

6-2250-7.book Page 157 Tuesday, March 21, 2006 3:45 PM

158 Part II: Authoring Reports

The list in the design grid looks like this:

2. Click Bold on the Report Formatting toolbar.

A basic list data region is created that includes a label to display the current Category
when the list repeats the group. Now, you’re ready to move the chart and matrix into
the list.

Nesting Data Regions

To overcome the limitation that a list can have only one grouping level, you can nest a second
list inside the first list. Nested lists increase your flexibility by simulating the effect of group-
ing. You can also nest other data regions inside a list, thereby enabling a variety of report
structures that are limited only by your imagination. When nesting data regions in a list, all
data regions must use the same dataset.

In this procedure, you’ll nest a chart and a matrix inside the list.

Move a chart and a matrix into the list

1. Click the chart, and then drag the chart into the list just below the Category textbox so
the list data region looks like this:

6-2250-7.book Page 158 Tuesday, March 21, 2006 3:45 PM

Chapter 6: Organizing Data in Reports 159

2. Preview the report.

The top of the report should have four separate charts, one for each category. The list is
repeating the textbox and the chart for each member of the Category group. The matrix
appears below the list just one time, because it is not yet part of the list.

Note If the chart is not repeating, the chart might not be properly positioned
within the list. Try moving the chart so its boundaries are clearly within the bound-
aries of the list.

3. Click the Layout tab, select the matrix, and then drag the matrix into the list just below
the chart.

At this point, the list should completely surround the chart and matrix.

4. Save and preview the report.

A portion of the first Category of the list is shown here:

Now, the scope of each matrix is limited to the Category group, which makes the subto-
tal for SubCategory redundant. Notice that the bottom two rows of the matrix are iden-
tical except for the difference in styles. You can edit the matrix to remove one of the
subtotals to fix this duplication.

5. Click the Layout tab, right-click the SubCategory Total cell, and then click Subtotal.

The Subtotal cell disappears from the matrix.

6. Drag the lower edge of the list up to place it just below the lower edge of the matrix to
shrink the space between the repeating regions.

7. Save and preview the report to confirm there is now only one subtotal row.

8. Close the project.

6-2250-7.book Page 159 Tuesday, March 21, 2006 3:45 PM

160 Part II: Authoring Reports

Chapter 6 Quick Reference

To Do this

Add a data region Open the Toolbox window, click the desired data region, point to
the target destination in the report body, and then click to place
the data region.

Add a row group or column group to a
matrix

Select a field in the Datasets window and drag to the applicable
area, marked Rows or Columns, in the matrix.

Add a static row or column to a matrix Right-click a textbox in the matrix, and click one of the following:
Add Row or Add Column.

Add subtotals to a matrix Right-click the group cell in a row or column, and then click Sub-
total. Format the subtotal value by clicking the green triangle in
the new Total cell for the group.

Open the Chart Properties dialog box Right-click the chart, and then click Properties.

Add values to a chart In the Datasets window, click the field to be used as a value and
drag it to the area of the chart labeled Drop Data Fields Here.

or

Open the Chart Properties dialog box, click the Data tab, and
then click the Add button next to the Values box. Click an expres-
sion in the Value list box.

Add a category group to a chart In the Datasets window, click the field to be used as a value and
drag it to the area of the chart labeled Drop Category Fields
Here.

or

Open the Chart Properties dialog box, click the Data tab, and
then click the Add button next to the Category Groups box. Click
an expression in the Expression list box.

Add a series group to a chart In the Datasets window, click the field to be used as a value and
drag it to the area of the chart labeled Drop Series Fields Here.

or

Open the Chart Properties dialog box, click the Data tab, and
then click the Add button next to the Series Groups box. Click an
expression in the Expression list box.

Add a grouping level to a list Click the list name in the report items list box of the Properties
window. Click the Ellipsis button of the Grouping property. Click
an expression in the Expression list box.

Nest a data region in a list Open the Toolbox window, click the data region, point to the tar-
get destination in an existing list, and then click it. Resize and po-
sition as necessary.

or

Drag an existing data region into a list while making sure that the
data region is completely surrounded by the list.

6-2250-7.book Page 160 Tuesday, March 21, 2006 3:45 PM

6-2250-7.book Page 161 Tuesday, March 21, 2006 3:45 PM
Chapter 7

Building Advanced Reports

After completing this chapter, you will be able to:

■ Create a report parameter to use as a variable for calculating values in a report.

■ Pass a report parameter to a query to filter data at the source.

■ Use a report parameter to filter a dataset or a data region in the report.

■ Use interactive features to navigate within a report or to jump to information located
elsewhere.

■ Work with hierarchical data.

In the previous chapter, you created a variety of reports to explore the different ways that data
can be organized into data regions. In this chapter, you’ll turn your attention to employing
advanced techniques to manipulate data in the report. You’ll work with report parameters to
allow a user to change a report on demand. You’ll also add other interactive features to reports
to help users navigate within and across reports. Finally, you’ll learn how to work with data
that is stored using hierarchical data structures. By successfully completing this and the pre-
vious three chapters, your report authoring skills will be complete.

Using Parameters to Change Report Data
Using report parameters makes reports more flexible in a number of ways. You can use a
report parameter alone to calculate values in the report. Such values may either be displayed
as content in the report or used to change properties that affect the behavior and appearance
of a report. For example, instead of using a fixed value to control conditional formatting in a
report, as you did in Chapter 5, “Working with Expressions,” you can add a report parameter
that prompts the user to enter a value. The report server then renders the report using the new
value to format the report.

You can also create a single report that provides alternate views of data by using a report
parameter in combination with a query parameter. This enables a query to be modified on
demand, thus changing the query results. A query parameter is a placeholder in the WHERE
clause of a SQL query that is linked to a report parameter. Reporting Services replaces the
placeholder in a query with a report parameter’s value and then executes the query. Each time
the value of the report parameter changes, the query executes.

Another way to use a report parameter is to filter data in the report after the query executes.
This technique is useful when a user wants to quickly switch between different sets of data in
161

162 Part II: Authoring Reports

6-2250-7.book Page 162 Tuesday, March 21, 2006 3:45 PM
the same report. With a filter in the report, a user does not have to wait for the query to exe-
cute after changing the value of a report parameter.

Adding a Report Parameter

Every report parameter you add to a report must have a unique name and a data type. The
report parameter name cannot contain a space or a special character, because its name will
become part of an expression used to access the parameter value. If you use a numeric or time
data type, be aware that you’ll have to use the Format function to control the formatting of the
value if you want to display the report parameter’s value in a textbox.

A report parameter normally has a prompt, which is a label for the input box or list box that
the user sees when the report is displayed. If you don’t enter text for a prompt, the user can
neither see nor change the report parameter. This is actually a good way to hide a parameter
if you’re providing the value in some other way, such as administratively, as you’ll learn in
Chapter 9, “Managing Content,” or programmatically, as you’ll learn in Chapter 18, “Building
Custom Reporting Tools.”

When you create a report parameter, you have the option to specify the values that Reporting
Services will consider valid. Not only can you prevent a user from using a blank or null value,
but you can also provide a list of specific values from which the user must choose. You can cre-
ate this list manually or by using a query from any dataset in the report to build the list. You
can even define a default value so the user can view the report before changing the report
parameter value. As with the list of available values, the default value may be entered manually
or it may be based on a query.

In this procedure, you’ll add a report parameter to prompt the user for a margin percentage
value that defaults to 0.15.

Add a report parameter with a default value

1. Start SQL Server Business Intelligence Development Studio and open the solution My
Adventure Works that you saved in the C:\Documents and Settings\<username>\My
Documents\Microsoft Press\rs2005sbs\Workspace\My Adventure Works folder.

Note If you skipped Chapter 6, “Organizing Data in Reports,” open the solution My
Adventure Works in the C:\Documents and Settings\<username>\My Documents
\Microsoft Press\rs2005sbs\Answers\chap06\My Adventure Works folder.

2. In Solution Explorer, right-click the Product Sales And Profitability.rdl report, click
Copy, click the Reports folder, and then press Ctrl+V to paste a copy of the report into
the folder.

3. Right-click the new report, click Rename, and then type a new name for the report:
Product Sales and Profitability Parameters.rdl.

Chapter 7: Building Advanced Reports 163

6-2250-7.book Page 163 Tuesday, March 21, 2006 3:45 PM
4. Double-click the Product Sales And Profitability Parameters.rdl report in Solution
Explorer to display the report in the Document window.

5. Click the Preview tab to view the report.

In Chapter 5, you added conditional formatting to this report to display margin percent-
age exceptions with red text when the value was below 15 percent. Now, you’ll use a
report parameter to allow the user to change the exception definition at execution.

6. Click the Layout tab, and then click Report Parameters on the Report menu to open the
Report Parameters dialog box.

Currently, no report parameters are defined in this report.

7. Click Add to add a parameter and enable the Properties area:

By default, the name of the parameter is also used as a prompt, which, as you’ll see later,
is visible to the user when the report is rendered online. Notice the options to control
whether the parameter can accept a null or a blank value, or both.

8. Replace the default parameter name with MarginPercent.

Remember that a parameter name cannot include a space or special character.

9. Click Float in the Data Type drop-down list.

Review the other data type options that are available in the Data Type drop-down list.
The default data type is String, but you’ll need to select a different data type if the expres-
sion in which you’re using the parameter value requires a different data type. In this
case, the value will be used to compare to a percentage value calculated in the report and
must, therefore, be typed as Float.

10. Replace the default prompt with Margin %.

164 Part II: Authoring Reports

6-2250-7.book Page 164 Tuesday, March 21, 2006 3:45 PM
Because the prompt is just a string that is displayed to a user in the HTML viewer, the
prompt can contain spaces and special characters.

11. Keep the Available Values option set to Non-Queried.

If you don’t create a list of available values, the user must type in a report parameter
value. You’ll learn how to provide available values later in this chapter.

12. Click the Non-Queried option in the Default Values pane.

A default value is required to enable report rendering before the user makes a selection.
If you opt to omit a default value, by selecting None, the report will not be rendered until
the user enters a value.

13. Enter a default value: .15.

The dialog box looks like this:

Notice the Expression button to the right of the Default Value input box. You can click
this button to build an expression that calculates the default value rather than use a
fixed value.

14. Click OK.

If you preview the report at this time, you see the report parameter, but because the
report definition hasn’t been changed yet to use its value, nothing happens if you try to
change the value.

Using the Parameters Collection

A report parameter is an object in the Parameters collection that you can access using either its
Value or Label property. The Value property retrieves the current value of the parameter,
whereas the Label property retrieves the user-friendly name for the parameter that is defined

Chapter 7: Building Advanced Reports 165

6-2250-7.book Page 165 Tuesday, March 21, 2006 3:45 PM
in the list of available values. Using Microsoft Visual Basic collection syntax, you can refer to
a report parameter in any expression.

In this procedure, you’ll modify the expressions that conditionally format the margin percent-
age so they use the report parameter value instead of a fixed value.

Change conditional formatting with a report parameter

1. Click the Layout tab, and then Click the Margin % cell, which is the cell in the sixth col-
umn of the detail row.

2. In the Properties window, click Expression in the Color property for the Margin % cell.

3. Position the cursor after the greater than symbol (<), and then delete 0.15 from the
expression.

4. Click the Parameters collection to view its members.

Each time you add a report parameter to the report, a new member is added to the
Parameters collection for you to use in an expression.

5. Click MarginPercent, and then click Paste.

The Edit Expression dialog box looks like this:

The MarginPercent parameter value, which can be changed at run time by the user,
replaces the fixed value of 0.15. Now, the conditional formatting will depend on the
value of the parameter supplied by the user to determine whether the margin percent-
age value in the report is displayed in red or black.

6. Copy the expression to the Clipboard so you can easily update the footer rows, and then
click OK.

166 Part II: Authoring Reports

6-2250-7.book Page 166 Tuesday, March 21, 2006 3:45 PM
7. Click the Margin % cell in the table1_SubCategory footer, and then, while pressing the
Ctrl key, click the same cell in the table1_Category footer and in the table footer to select
all three cells. Paste the expression from the Clipboard into the Color property.

8. Select only the Margin % cell in the table footer, click Expression in the Color prop-
erty drop-down list, and then edit the expression to replace Black with White, as
shown here:

=IIf(Me.Value<Parameters!MarginPercent.Value, "Red", "White")

In the table footer, the background is black. If the text color is also black, the margin per-
centage will not be visible to users when its value is greater than the value supplied for
the report parameter. Instead, use white to be consistent with the text color of other
cells in this row.

9. Click OK to close the Edit Expression dialog box.

10. Save your report, and then check the results by clicking the Preview tab.

The report parameter is displayed above the HTML Viewer toolbar:

You didn’t provide a list of available values for this parameter, so a parameter input box
is displayed above the report, preceded by its prompt string (Margin %). Because the
report parameter has a default value, the report is rendered on demand and the default
value is displayed in the parameter’s input box.

11. Enter 0.35 for Margin %, and then click View Report.

Clicking View Report renders the report using the new report parameter value, and now
you can see that the Margin % for Full-Finger Gloves, L, and the Clothing category
footer are rendered with red text.

Tip Allowing a null value for the report parameter is fine if the expression will evaluate
correctly. If you want to allow the user to render this report without any conditional for-
matting, you can select the report parameter option Allow Null Value. Then, when the
report renders, a NULL check box appears next to the Margin % parameter. If the user
were to select the NULL check box, the expression would return false for all rows, since
none of the rows have a margin percentage that is less than null. The false result for the
expression would cause all rows to display the margin percentage in black, except the
table footer, which would display in white, which effectively removes conditional format-
ting from the report.

Chapter 7: Building Advanced Reports 167

6-2250-7.book Page 167 Tuesday, March 21, 2006 3:45 PM
Adding a Query Parameter

You can make a query more flexible by adding a query parameter to the WHERE clause as a
placeholder for a value that will be used to filter the data at the source. Always precede the
parameter name with the @ symbol. If you have several datasets in the report, you can use the
same query parameter in each dataset.

Important Some data sources do not support query parameters. For these data sources,
you’ll need to use a report filter instead (which you’ll learn how to use later in this chapter).

In this procedure, you’ll replace the fixed values in the WHERE clause of the dataset query
with query parameters.

Add query parameters to the dataset

1. Click the Data tab to view the current query, as shown here:

As currently written, this query will create data for a single month only, so a user of the
report cannot change the month and year to view results for a different time period.

2. Replace the WHERE clause of the query with the following:

WHERE Year = @Year AND MonthNumberOfYear = @Month

168 Part II: Authoring Reports

6-2250-7.book Page 168 Tuesday, March 21, 2006 3:45 PM
Important If you’re using an Oracle data source with a named query parameter, as in
this example, you must select the Oracle data provider instead of the generic Open
Database Connectivity (ODBC) data provider in the Data Link Properties of your data
source.

3. Click the Edit Selected Dataset button, which is the ellipsis button (…) next to the
Dataset drop-down list, to view the Dataset dialog box:

Notice that you can change the dataset name, the data source, and the query, as well as
other properties related to the dataset using this dialog box.

4. Click the Parameters tab to view the parameter mappings:

Chapter 7: Building Advanced Reports 169

6-2250-7.book Page 169 Tuesday, March 21, 2006 3:45 PM
The Report Designer automatically creates parameter expressions to which the query
parameters, @Year and @Month, are mapped.

5. Click Cancel to close the Dataset dialog box.

Supplying Values for a Query Parameter

Before the query executes, Reporting Services replaces the query parameter with the current
value of the corresponding report parameter. Even though you could let the user type in a
value for a report parameter, a better approach is to create a list of available values for the
report parameter to ensure that the user provides a valid value. You can maintain a fixed list of
available values for the report parameter, which you’ll learn how to do in this procedure, or
you can use a query to generate a list of available values, which you’ll learn how to do later in
this chapter.

A list of available values, regardless of how it is built, always contains labels and values. The
label is added to the list of items that the user sees in the report parameter’s drop-down list.
The value is the corresponding result passed to the report parameter for use in an expression
or as a query parameter.

In this procedure, you’ll manually enter a list of available values for the Year and Month report
parameters.

Define a list of available values for a report parameter

1. Click the Layout tab, and then click Report Parameters on the Report menu.

Notice the two new report parameters, Year and Month.

2. Click Year in the Parameters list.

By default, the name of the parameter is also used as the prompt, the options to allow a
null or blank value are cleared, the Available Values option is set to nonqueried, and the
Default Values option is set to Null.

3. In the Available Values table, type the following values:

In this table, the labels and the values are the same because the value in the database is
a label that will be understood by the user when choosing a value from the report
parameter’s drop-down list.

Label Value

2001 2001

2002 2002

2003 2003

2004 2004

170 Part II: Authoring Reports

6-2250-7.book Page 170 Tuesday, March 21, 2006 3:45 PM
Note Instead of typing in a label or a value for the list, you can use an expression to
generate the label or value at run time. Just click the drop-down list in the applicable
field to access the Edit Expression dialog box. Alternatively, you can use a query to sup-
ply the values for the parameter, which you’ll learn how to do later in this chapter.

4. Click the Non-Queried option in the Default Values pane.

5. Enter a default value: 2003.

The dialog box looks like this:

Tip Often, users want to view the most current data in a report. Instead of hard-
coding the year, use an expression to calculate the year: =Year(Now). You must make
sure that the result is in the parameter’s table of Available Values and that the dataset
will contain data for the current year; otherwise, the report will be empty.

6. In the Parameters list, click the Month parameter.

7. In the Available Values table, type in the following values:

Label Value

Jan 1

Feb 2

Mar 3

Chapter 7: Building Advanced Reports 171

6-2250-7.book Page 171 Tuesday, March 21, 2006 3:45 PM
Note In an actual report, you’d supply all months and month values. This example is
abbreviated to reduce the amount of typing you need to do for this procedure.

In this example, the labels and values differ because Month is stored as a numeric value
in the database and needs to be passed to the query as such. Although using a number
to represent the month probably wouldn’t confuse users, in other situations, a numeri-
cal value for the label might be meaningless to the user. For such cases, specify a user-
friendly label.

8. Click the Non-Queried option in the Default Values pane.

9. Enter a default value: 1.

Tip As with the Year parameter, you can use an expression to use the current month as
the default value for the Month parameter. In this case, use the following expression:
=Month(Now).

10. Click OK.

11. Save the report, and then preview the results.

12. Click Mar in the Month drop-down list, and then click View Report.

13. Click 75% in the Zoom drop-down list to shrink the report so you can see the full width.

The Document window looks like this:

Now you have three report parameters in your report. The first, Margin %, is used in an
expression in the report to change the report formatting. The other two, Month and
Year, are used to define the query that executes to retrieve data for the report. Since
default values were supplied for all the report parameters, the report was executed

172 Part II: Authoring Reports

6-2250-7.book Page 172 Tuesday, March 21, 2006 3:45 PM
and rendered using those values. Notice that the report parameters are placed left to
right, wrapping to the next row when space is limited, in the same order in which they
appear in the Report Parameters dialog box.

Using Input Parameters with a Stored Procedure
Reporting Services supports the use of stored procedures to create a dataset as long as
the stored procedure returns a single result set. Creating a dataset that uses a stored pro-
cedure is similar to creating a query-based dataset. In the Dataset dialog box, you must
name the dataset, set the command type to StoredProcedure, and set the query string to
the name of the stored procedure.

You can even use the value of report parameters as input parameters for the stored pro-
cedure. The Parameters tab of the Dataset dialog box allows you to map report parame-
ters to the input parameters of the stored procedure. Type the name of the input
parameter in the Name field, and then select the corresponding report parameter from
the Value drop-down list on the same row.

Creating a Report Parameter for a Filter

A filter can be added to a dataset, a data region, or a grouping level. In all cases, the process is
very similar. A filter is most commonly based on a report parameter’s value, which might be
selected from a list that is created from another dataset in the report. It can also be based on
any valid expression. Before defining a filter using a report parameter, you must first add the
report parameter to the report. Then, you add a filter definition to the applicable object, such
as the report’s main dataset, using the object’s Properties dialog box. It’s good practice to dis-
play the report parameter’s label in the report in case the user decides to save or print the
report for future reference.

A filter is similar to a query parameter in that both result in fewer detail rows for the report.
However, a query parameter filters data at the data source when the query is executed and
returns a filtered row set to the dataset. A filter, by contrast, prevents some rows in the dataset
from being displayed in a report, but it does not eliminate them from the dataset. Using a filter
can improve report performance when the user changes report parameter values, because
data is available for rendering without necessitating another query to the database.

Note A query parameter can also improve report performance by returning fewer rows in
the dataset. Whether to use a query parameter or a filter parameter depends on the volume of
rows that are being returned from the data source versus the volume of rows that are being fil-
tered out of the dataset for rendering.

Chapter 7: Building Advanced Reports 173

6-2250-7.book Page 173 Tuesday, March 21, 2006 3:45 PM
As with query parameters, you should make sure that the report parameter value used in a fil-
ter is valid. The best way to do this is to use a query to build a list of available values for the
report parameter. This query should contain columns only for labels and values. By using a
query, you can keep the list of available values up-to-date with actual values contained in the
source database.

In this procedure, you’ll add a dataset to the report to retrieve valid values for a report parameter.

Add a dataset for report parameter values

1. Click the Data tab, and then click <New Dataset…> in the Dataset drop-down list.

2. Type Category as the dataset name, and then click OK.

3. If necessary, click Generic Query Designer on the Dataset toolbar to toggle from the
Generic Query Designer to the Query Builder.

4. Right-click in the Diagram pane (the top pane), and then click Add Table.

5. Select DimProductCategory in the list of tables, click Add, and then click Close.

The DimProductCategory table is displayed in the Diagram pane. You can build a SQL
query by using the table diagram to select columns from the table.

6. Select the ProductCategoryKey and ProductCategoryName check boxes in the Dim-
ProductCategory table diagram.

The DimProductCategory table contains only five records that represent the distinct
names of all product categories that Adventure Works sells, whereas the vProductProfit-
ability view contains many records for sales transactions that also include category
names. You get the same results whether you query the table or the view, but querying
DimProductCategory to get values for a report parameter is potentially much faster
because fewer records must be scanned.

7. Enter AS CategoryKey after ProductCategoryKey in the SQL pane, and then enter AS
Category after ProductCategoryName so the SQL statement looks like this:

SELECT ProductCategoryKey AS CategoryKey, ProductCategoryName AS Category FROM

DimProductCategory

The AS expression creates an alias to replace the actual column name, often to make
shorter column names in the result set or to make the original column names more user-
friendly in the result set. For example, CategoryName is the alias for ProductCategory-
Name. You don’t have to use an alias for ProductCategoryName, but sometimes, doing
so can make expressions in the report easier to read.

8. Click Verify SQL to check the query syntax, and then click OK.

Now that you’ve successfully added another dataset to the report, you’ll need to update
any report item using an aggregate in the report body to associate it with the correct
dataset.

174 Part II: Authoring Reports

6-2250-7.book Page 174 Tuesday, March 21, 2006 3:45 PM
9. Click the Layout tab, right-click the textbox in the upper right corner of the report that
contains the Sum aggregate function, and then click Expression.

10. Add ''DataDetail'' as a Scope argument to the expression so that it looks like this:

="Total Product Sales: " + Format(Sum(Fields!SalesAmount.Value, "DataDetail"), "c0")

Tip The Scope argument is now required for aggregate expressions in independent
report items, such as a textbox, because your report now contains two datasets. Without
the Scope argument in aggregate expressions, the report will fail to process. For this rea-
son, it’s a good habit to always use a Scope argument in a report that contains only one
dataset so you can avoid having to fix the expression later if you need to add another
dataset.

11. Click OK to close the expression editor.

In this procedure, you’ll add a new report parameter that will use the Category dataset to
build a list of available values.

Add a report parameter with a query for available values

1. Click the Layout tab, and then click Report Parameters on the Report menu.

2. Click Add.

3. Enter a name: Category.

4. Click Integer in the Data Type drop-down list.

Because you’ll be using the value returned from the CategoryKey column as the report
parameter, you must change the data type of the report parameter to match the data
type of the database value.

5. Enter a prompt: Category.

6. Select the From Query option for Available Values.

7. Select Category in the Dataset drop-down list.

All datasets in the report are available for selection. The two field names created from the
query will be assigned to the Value and Label fields for Available Values. They serve the
same purpose as the Value and Label fields for which you added values earlier in this chap-
ter. The query you use to supply values for a report parameter should include only two col-
umns, one for the value passed to the report, and one for the value displayed to the user.

Tip You can build cascading parameters by using the value of one report parameter as
a query parameter in a query used to populate the list of values for another report
parameter. This is useful for reducing the size of a list of available values, thereby making
it easier for a user to find a desired value.

Chapter 7: Building Advanced Reports 175

6-2250-7.book Page 175 Tuesday, March 21, 2006 3:45 PM
8. Select CategoryKey in the Value Field drop-down list.

9. Select Category in the Label Field drop-down list.

10. Select the Non-Queried option for Default Values.

11. Enter 4 as a default value so the Report Parameters dialog box now looks like this:

The value 4 corresponds to the Component category. The report parameter list box will
display Component by default when the report is rendered. If you decide instead to use
a query to set a default value, you must select the dataset and a value field.

Notice that the option to Allow Blank Value is not available. This option is not permitted
when the data type is set to Integer. A blank value is possible only when using the string
data type.

12. Click OK.

If you preview the report at this point, nothing is changed (other than the addition of
the parameter to the Report toolbar) because you have not yet used the report parame-
ter value in an expression.

Adding a Filter

You can apply a dataset filter by editing the properties of a dataset. Reporting Services will fil-
ter all data regions that use the filtered dataset in the report. The effect in a rendered report
looks the same as it does when using a query parameter in the WHERE clause of a query, but
it is different because the full dataset is retrieved from the data source.

You can also filter a single data region in a report and keep the full dataset for other data
regions. Say, for example, you have a matrix that shows annual sales for multiple years, but
you want to chart sales only for the most recent year. Instead of placing the filter on the
dataset, right-click the data region that you want to filter so you can access the data region’s

176 Part II: Authoring Reports

6-2250-7.book Page 176 Tuesday, March 21, 2006 3:45 PM
Properties dialog box. The Filters tab in this dialog box is similar to the dataset’s Filters tab,
but affects only the selected region. Similarly, a grouping level of a data region can be filtered
by editing its properties.

In this procedure, you’ll apply a filter to the DataDetail dataset based on the value of the Cat-
egory report parameter.

Add a filter to a dataset

1. Click the Data tab.

2. Select DataDetail in the Dataset drop-down list.

3. Click the Edit Selected Dataset button.

4. Click the Filters tab.

5. Select =Fields!CategoryKey.Value in the Expression drop-down list.

You must select this expression because it corresponds to the value returned by the
report parameter, CategoryKey, and not the label, Category.

6. Select Expression in the Value drop-down list.

7. Click Parameters, click Category, and then click Paste.

8. Click OK.

The Dataset dialog box should look like this:

9. Click OK.

10. Save the report, and then preview the results.

11. Select Bike in the Category drop-down list, and then click View Report.

The report now only shows information for products in the Bike category. Because you
used a filter, the dataset query was not executed.

Chapter 7: Building Advanced Reports 177

6-2250-7.book Page 177 Tuesday, March 21, 2006 3:45 PM
Adding a Parameter Value to a Report

To ensure that users of a report clearly understand that a report has been filtered, include a
textbox that displays the current value of the filter. To do so, display the Label property of the
report parameter that is used as the filter in a textbox.

In this procedure, you’ll add a textbox to the top of the report to identify the current filter
when the report is rendered.

Display a parameter value in a text box

1. Click the Layout tab, click the Total Product Sales textbox while pressing Ctrl, and then
drag below the Total Product Sales textbox to make a copy of it.

2. Right-click the new textbox, and then click Expression.

3. Delete the existing expression, click Parameters, click Category, and then click Paste.

4. Change the expression so it looks like this:

="Filtered by: "+Parameters!Category.Label

Even though the value passed to the report parameter is an integer, you have access to
the label of the report parameter for display in a textbox.

5. Click OK.

6. Save, and then preview the report.

The top of your report should now look like this:

Notice that the Category default value, Component, is now displayed at the top of the
report.

Linking Information with Interactive Features
Report parameters are a useful interactive feature of Reporting Services that allows a user to
manipulate what is shown within a report. Other features are also available—actions, visibility
properties, and subreports—to help users interactively navigate reports. Since these features
are dependent on interaction with a user, the reports must be rendered on a device that not

178 Part II: Authoring Reports

6-2250-7.book Page 178 Tuesday, March 21, 2006 3:45 PM
only supports HTML, but also maintains a connection to the Report Server during the report-
ing session.

As with many of the features of Reporting Services, the full range of potential applications is
impossible to enumerate. One way to think about using these features is to consider how a
user generally begins exploring information. A user often starts by examining summary infor-
mation to determine which detailed data needs to be examined. As with the index at the back
of this book, summary information can be used as a pointer to more specific information. Sim-
ilarly, you can implement actions to allow a user to jump from summary data to detail data,
regardless of whether all of the data is included in the same dataset or report. Alternatively,
when the summary and detail data can be retrieved from the same dataset, you can build a
data region that includes all the data, and then use visibility properties to hide the details until
the user chooses to view them. However, there are times when the details come from a differ-
ent dataset that precludes the use of a single data region, but you can easily solve this problem
by nesting a subreport inside a data region.

Choosing the Right Action
An action is used to link a report item to information located elsewhere. The type of
action you create determines where that information is located and what it looks like.
When a user clicks a bookmark action, the report switches to another area of the report,
which might be another data region or another page in the same report. Implementing
a bookmark action is a two-step process. You have to add the bookmark to a report item
(which is not limited to a textbox or an image) that is the destination of the bookmark
action, and then add the bookmark action to the report item that serves as the origina-
tion point.

A hyperlink, or URL, action launches a Web page when a user clicks a report item. You
can define a static URL, or you can use an expression to generate a URL dynamically at
run time. You might even consider storing URLs in a relational table that you can query
and reference using a field expression. This would allow you to select an appropriate tar-
get destination based on current conditions in the source report, or to maintain destina-
tions in a database table to avoid editing the report if a destination changes later.

An action that jumps to another report can simply open another report, or it can pass a
value to a report parameter in the target report to control what happens when the report
executes or is rendered. For this type of action, you identify the target report, and then,
if you’re taking advantage of a report parameter, you associate a value in the source
report to a specific report parameter in the target report.

Chapter 7: Building Advanced Reports 179

6-2250-7.book Page 179 Tuesday, March 21, 2006 3:45 PM
Adding Actions

You can add an action either via the Navigation tab of a report item’s Properties dialog box or
by accessing the Action property of the report item in the Properties window. Although you
have a lot of freedom to choose the direction an action will take a user, you can add an action
only to a textbox or an image in a report.

In this procedure, you’ll add an action to the Product textbox in the Orders Detail report to
jump to the Products Detail report and display information for the selected product.

Add an action to jump to a report

1. In Solution Explorer, right-click the Reports folder in the project My Adventure Works,
point to Add, and then click Existing Item to add the Orders Details.rdl saved in the
C:\Documents and Settings\<username>\My Documents\Microsoft Press\rs2005sbs
\chap07 folder.

2. Right-click the Shared Data Sources folder, point to Add, and then click Existing
Item to add the rs2005sbs.rds data source saved in the C:\Documents and Settings
\<username>\My Documents\Microsoft Press\rs2005sbs\chap07 folder.

3. In Solution Explorer, double-click Order Details.rdl to open the report in the Docu-
ment window, and then click the Preview tab to confirm that the top of the report
looks like this:

This report uses a table data region to display order detail information used by Cus-
tomer Service representatives at Adventure Works to verify order status, troubleshoot
order complaints, and answer questions from resellers.

4. In the Solution Explorer, right-click the Reports folder in the project My Adventure
Works, point to Add, and then click Existing Item to add the Product Detail.rdl saved
in the C:\Documents and Settings\<username>\My Documents\Microsoft Press
\rs2005sbs\chap07 folder.

180 Part II: Authoring Reports

6-2250-7.book Page 180 Tuesday, March 21, 2006 3:45 PM
5. In Solution Explorer, double-click Product Detail.rdl to open it, and then click the Pre-
view tab, scrolling down to view the product information, which should look like this:

This report is used in conjunction with the Order Details report to aid in responding to
resellers’ questions. Notice the report parameter to select a product.

6. Close the Product Detail report by clicking Close in the upper-right corner of the Docu-
ment window.

7. Click the Layout tab of the Order Details report, and then click the Product cell in the
first column of the detail row.

8. In the Properties window, click the ellipsis button for the Action property, which is near
the bottom of the properties list in the Misc section, to display the Action dialog box:

9. In the Action dialog box, click Jump To Report.

10. Select Product Detail in the Jump To Report drop-down list.

Notice that the only reports available in the list are those located in the same project.
Also, notice the Expression button, which you can use to build an expression to assign
a report name.

Chapter 7: Building Advanced Reports 181

6-2250-7.book Page 181 Tuesday, March 21, 2006 3:45 PM
Note You aren’t required to use a report from the same project. The list box is just a
convenience feature. You can type in the name of a report that is (or will be) on the
Report Server. If the target report will not be in the same folder as the source report,
you’ll need to precede the report name with the absolute or relative folder path on the
server.

If you select Jump To Bookmark, you can enter the bookmark identifier, or you can click
the Expression button to build your own expression that evaluates to a bookmark iden-
tifier. This feature won’t work until the bookmark identifier is added to a report item.

11. Click Parameters.

The Parameters dialog box is displayed. This dialog box allows you to provide a value
to pass to the report parameter so the target report can be executed and rendered.
The value you supply here overrides the default value, if any, assigned to the report
parameter.

12. Select Product in the Parameter Name drop-down list.

The Parameter Name drop-down list displays all report parameters in the target report.
In this case, there is only one report parameter, Product.

13. Select =Fields!Product.Value in the Parameter Value drop-down list so the Parameters
dialog box now looks like this:

Notice that you can select <Expression…> in the Parameter Value drop-down list to build
an expression to return a value to be passed to the target report’s report parameter.

182 Part II: Authoring Reports

6-2250-7.book Page 182 Tuesday, March 21, 2006 3:45 PM
14. Click OK twice to return to the Properties window, where the Action property contains
a value, as shown here:

The three dots indicate that an action has been defined for the current report item.
You’ll have to click the ellipsis button to access the Action dialog box to see what kind of
action has been defined.

15. With the Product cell selected in the detail row, click Underline on the Report Format-
ting toolbar.

Tip If the user points to a report item that has an action defined, the cursor changes
to a pointing hand to indicate that clicking the item will launch an action. To provide
a visual cue to users that an action exists, it’s a good idea to underline the text (if the
report item is a textbox) to simulate a hyperlink, which most users recognize as a nav-
igation tool.

16. Save the report, and then preview it to test out the action.

17. Click the LL Mtn Frame – Silver, 44 product in the report to view the Product Detail
report, which looks like this:

If the report does not refresh, click the action again.

18. On the Preview toolbar, click Back to return to the Order Details preview.

Using the Hidden Property

Dynamic visibility in Reporting Services allows you to create a drilldown report. Drilldown is a
term typically used to describe the ability to click a summary value, which then displays the
detail values that contribute to the selected summary value. To implement dynamic visibility,

Chapter 7: Building Advanced Reports 183

6-2250-7.book Page 183 Tuesday, March 21, 2006 3:45 PM
you select the report items to be hidden when the report opens and set the Hidden property
for these items to True. Then, for these same items, you use the ToggleItem property to specify
the report item that the user must click to make the hidden report items visible, or to return
the visible items to a hidden state.

The Hidden property, which appears in the Visibility category in the Properties window, con-
trols the visibility of a report item using the fixed values True or False, or a conditional expres-
sion that evaluates as True or False. Although a drilldown report often has all detail rows
hidden when the report is initially rendered, you can use an expression to display the detail
rows for specific grouping levels while hiding other detail rows for other grouping levels.

In this procedure, you’ll hide the detail rows of the table in the Order Details report.

Hide detail rows in a table

1. Click the Layout tab, click the table to display handles, and then click the row handle of
the detail row to select the entire row.

2. In the Properties window, expand the Visibility category, and then click True in the Hid-
den property list box.

The Hidden property, when set to True, prevents a report item from appearing in a
report. However, the value can still be referenced by an expression associated with
another report item.

3. Click the table1_Order footer row handle.

4. In the Properties window, expand the Visibility category, and then select True in the
Hidden property drop-down list.

5. Save and then preview the report.

The report should look like this:

The order detail rows and the order footers (which had the subtotals) are now hidden
from view. The table footer still displays and calculates correctly.

Using the ToggleItem Property

ToggleItem is another property that is assigned to the Visibility category in the Properties
window. The value of this property must be a textbox in the report. When the report is
rendered, the specified textbox will be displayed with a plus sign. A user can expand or

184 Part II: Authoring Reports

6-2250-7.book Page 184 Tuesday, March 21, 2006 3:45 PM
collapse the visibility of the report item. So, if a detail row is hidden when the report is ren-
dered and its toggle item is a textbox in a header row, when a user clicks that plus sign in
that textbox, the detail row is displayed. Conversely, if the detail row is visible, when the
user clicks the toggle item, the detail row is hidden.

If group footer totals are in the rows that you are hiding when the report initially opens, you
might want to include these totals in a visible group header temporarily. You can then use the
ToggleItem property for individual cells to hide the totals in the group header when the group
footer is visible.

In this procedure, you’ll assign the SalesOrderNumber textbox to the ToggleItem property of
both the detail row and table1_Order footer in the table of the Order Details report.

Toggle the hidden state of an item

1. Click the Layout tab, and then click the row handle of the detail row to select the
entire row.

2. In the Properties window, expand the Visibility category, and then select SalesOrder-
Number in the ToggleItem property drop-down list.

SalesOrderNumber is the name of the textbox containing the order number in the
table1_Order header. By selecting this item as a ToggleItem, the SalesOrderNumber text-
box will be the item that the user clicks to display the underlying detail rows.

3. Click the table1_Order footer handle to select the entire row.

4. In the Properties window, expand the Visibility category, and then select SalesOrder-
Number in the ToggleItem property drop-down list.

5. Save and then preview the report to check the results.

6. Expand order SO8501 to confirm that your report looks like this:

Now, when you click a SalesOrderNumber, the detail rows and the order footer are
displayed.

In this procedure, you’ll use the Toggleltem property to display the group footer totals in the
group header when detail rows are hidden and hide the group header totals when detail rows
are visible.

Chapter 7: Building Advanced Reports 185

6-2250-7.book Page 185 Tuesday, March 21, 2006 3:45 PM
Show group footer totals in the group header when detail rows are hidden

1. Click the Layout tab to return to the design grid.

2. In the table1_Order footer, click the Qty cell. While pressing Shift, click the Extended
Price cell, and then copy the contents to the Clipboard.

3. Click the Qty cell in the table1_Order header, and then paste the contents of the
Clipboard to the corresponding cells of the table1_Order header so the table now
looks like this:

When you copy these textbox formulas, the Visibility settings are not copied because
the settings, in this case, are associated with the table rows and not the textboxes.

4. With the three cells still selected, expand the Visibility category in the Properties win-
dow, and then select SalesOrderNumber in the ToggleItem property drop-down list.

Note Don’t change the Hidden property. It should still be False.

When the item is toggled, the values set for the property are hidden. In this case, the
totals will be displayed in the group header when the detail rows are hidden. When tog-
gled, the totals will be hidden in the group header.

5. Keep the three cells selected and select Solid in the drop-down list for the BorderStyle
property.

6. Save the report and then preview it to confirm that your report looks like this:

Notice that the sales order totals are now visible in the order header row.

186 Part II: Authoring Reports

6-2250-7.book Page 186 Tuesday, March 21, 2006 3:45 PM
7. Expand order SO8501 to view the details, which look like this:

Now the totals in the header are hidden, and the detail rows and footer are displayed.

Deciding When to Use a Subreport
A subreport is a report item you can use to display another report inside the current
report. To filter data in the subreport, you can pass a value from the main report to a
report parameter in the subreport.

When you want to represent data from the same dataset in different ways in the same
report, use separate data regions for the best performance. Even though the subreport
behaves like just another data region, it’s really a different report and is treated as such
by the Report Server, which must process each subreport separately from the main
report. By comparison, the Report Server can process a report containing multiple data
regions in one pass. When processing the subreport, the Report Server ignores report
items and properties in the subreport that are not a part of the report body, such as page
size, or the page header and footer.

Keeping these trade-offs in mind, in a couple of situations, you might find using a sub-
report useful. For example, even though you cannot nest data regions that use different
datasets, you can nest a subreport regardless of its dataset. This technique is useful when
you need to combine data from disparate data sources. Another reason for using a sub-
report is to minimize the re-creation of detailed data that is frequently used in many dif-
ferent reports. You can organize this data once, and then reuse it over and over.

Adding a Subreport

Adding a subreport to your report is much like adding a data region. You use the Toolbox win-
dow to add a subreport, and then position the subreport in the report body. A subreport can
be freestanding in the report, or it can be nested inside a data region. Nesting a subreport
allows you to display data from a dataset that is not associated with the data region, and thus
is an especially useful feature when you want to provide supporting details that are stored in
a separate data source from the summary information. You can even pass a value to the sub-
report to control the subreport’s behavior when it executes or is rendered.

Chapter 7: Building Advanced Reports 187

6-2250-7.book Page 187 Tuesday, March 21, 2006 3:45 PM
In this procedure, you’ll nest the Product Detail report as a subreport in the Product Sales and
Profitability report, and then pass the current Product value to a report parameter in Product
Detail.

Nest a subreport in a table

1. In Solution Explorer, right-click the Product Sales and Profitability.rdl report and click
Copy.

2. Click the Reports folder, and then press Ctrl+V to paste a copy of the report into that
folder.

Because you are working exclusively in the Report Designer, both reports must be in the
same folder to preview the reports.

3. Right-click the new report, click Rename, and then type a new name for the report:
Product Sales and Profitability Subreport.rdl.

4. Double-click the Product Sales and Profitability Subreport.rdl report in Solution
Explorer to display the report in the Document window.

5. Click the table, right-click the detail row, and then click Insert Row Below to add a new row.

6. Clear the expression from the Color property of the last cell in the new row.

When you insert a row, the style properties are copied from the row from which you ini-
tiated the insert action. Since there is no string text or expression in this cell, the expres-
sion in the Color property won’t do anything. Removing the expression will incrementally
improve performance, because there will be one less expression evaluated when the
report is processed.

7. In the Toolbox window, click Subreport, and then click the first cell of the empty detail row.

8. Right-click the subreport, and then click Properties.

9. Click Product Detail in the Subreport drop-down list, which should now look like this:

188 Part II: Authoring Reports

6-2250-7.book Page 188 Tuesday, March 21, 2006 3:45 PM
Note As with actions, you aren’t required to use a report from the same project. You
can type the absolute or relative folder path to the report on the Report Server and the
name of the report.

10. Click the Parameters tab.

11. Select Product in the Parameter Name drop-down list.

12. Select =Fields!Product.Value in the Parameter Value drop-down list, and then click OK.

Note You must supply a value for each report parameter in the subreport to display
the subreport correctly.

13. Click the second detail row, which contains the subreport, to select the entire row.

14. In the Properties window, expand the Visibility category, and then click True in the Hid-
den property.

15. Select Product in the ToggleItem property drop-down list.

16. Save, and then preview the report at a zoom factor of 75 percent to check the results.

17. Expand the AWC logo cap item, and then scroll to see the details, which should look
like this:

Now, when you click a product in the detail rows, the subreport for the selected product
displays. In this case, the subreport allows access to details from a completely different
dataset. This access would not be possible within a table using nested data regions.

Working with Hierarchical Data
In addition to providing interactive features to help you build more sophisticated reports,
Reporting Services helps you tackle the challenge of working with hierarchical data in reports.

Chapter 7: Building Advanced Reports 189

6-2250-7.book Page 189 Tuesday, March 21, 2006 3:45 PM
Specifically, Reporting Services supports the identification of levels in a recursive hierarchy and
the aggregation of information across levels within a particular branch of the hierarchy. One
type of recursive hierarchy you encounter in data warehousing is a parent-child dimension.

Another hierarchical structure that Reporting Services can access is an Analysis Services
online analytical processing (OLAP) database. Analysis Services, like Reporting Services, is
bundled with SQL Server. Analysis Services is a server-based OLAP engine that structures data
to facilitate fast and powerful queries that would be challenging to reproduce with traditional
relational queries. Creating an OLAP database has three main benefits:

■ Its hierarchical structure simplifies user navigation.

■ An OLAP database can respond to queries faster than a relational database because it
uses this hierarchical structure to store precalculated aggregations.

■ An OLAP database uses sophisticated analytical formulas on the server, particularly
time series analysis, such as year-over-year comparisons.

Many commercial software companies have developed client tools that allow a user to per-
form interactive analysis directly with the OLAP database. Still, using Reporting Services to
access OLAP data using an MDX (multidimensional expressions) query has two main advan-
tages. First, you can provide a simple implementation of a thin-client solution when the major-
ity of users don’t need flexible analysis but do want access to the results of server-based
calculations. Second, you can reduce the execution time of a report as compared to retrieving
the same data from a relational source.

Displaying a Recursive Hierarchy in a Data Region

To add a recursive hierarchy to a data region, you need to modify the data region’s grouping
properties. The group expression must be the field expression that identifies the unique
records in the hierarchy. Then, you specify a parent group expression that identifies the par-
ent records. For example, in a table that describes the organizational relationship between
employees and managers, each employee record has a key column to uniquely identify the
employee and a parent key column that points to the parent record—the employee’s manager—
in the same table. You can group employees by manager using these key columns and per-
form aggregations of values within these groupings, such as counting employees by manager
or totaling the employees’ salaries.

In this procedure, you’ll add a grouping level to a table for a recursive hierarchy that has
employees as unique records and supervisors as parent records.

Define a parent group for a recursive hierarchy

1. In Solution Explorer, right-click the Reports folder in the project My Adventure Works,
point to Add, and then click Existing Item to add the Employee Salaries.rdl saved in the
C:\Documents and Settings\<username>\My Documents\Microsoft Press\rs2005sbs
\chap07 folder.

190 Part II: Authoring Reports

6-2250-7.book Page 190 Tuesday, March 21, 2006 3:45 PM
2. Double-click the Employee Salaries.rdl report to open it in the Document window, and
then click the Preview tab to confirm the top of the report looks like this:

You’ll be changing this report to group employees by supervisor.

3. Click the Layout tab, click the table, and then click the detail row to select the row.

4. In the Properties window, click the ellipsis button for the Grouping property.

5. In the Details Grouping dialog box, type RecursiveGroup as the name.

6. Select =Fields!EmployeeKey.Value from the Expression drop-down list.

7. Select =Fields!ParentEmployeeKey.Value from the Parent group drop-down list so the
Details Grouping dialog box now looks like this:

8. Click OK.

9. Click the table, right-click the table handle in the top-left corner, and then click Properties.

Chapter 7: Building Advanced Reports 191

6-2250-7.book Page 191 Tuesday, March 21, 2006 3:45 PM
10. Click the Sorting tab.

11. Select =Fields!Salary.Value in the Expression drop-down list, select Descending in
the Direction drop-down list, and then click OK.

12. Save and then preview the report at a zoom factor of 75 percent to check the results.

Now, employees are sorted in groups by supervisor, and sorted within the group by sal-
ary in descending order. However, the layout still doesn’t clearly distinguish supervisors
from employees.

Using the Level Function

The Level function is used with recursive hierarchies to identify the relationship of the current
row to the top of the hierarchy. The syntax of this function is Level(Scope) where Scope is the
name of a grouping, data region, or dataset. If you omit Scope, the current scope of the expres-
sion is used. The function returns an integer value that starts at 0 for the top of the hierarchy
and increments by 1 for each subsequent level. The most common use of this function is to
change style properties for different levels of a hierarchy.

In this procedure, you’ll use the Level function to display the current level of the hierarchy and
to format cells by level.

Use the Level function in an expression

1. Click the Layout tab, right-click the Level cell in the detail row, and then click Expression.

2. Type the following expression:

=Level("RecursiveGroup")

The scope of the function is RecursiveGroup, which is the employee grouping you created
in the previous procedure.

3. Click OK.

4. Save and then preview the report, which should now look like this:

192 Part II: Authoring Reports

6-2250-7.book Page 192 Tuesday, March 21, 2006 3:45 PM
Now, you can see the employee groupings more easily, but formatting would make the
groups stand out even better.

5. Click the Layout tab, and then click the first cell in the detail row.

6. In the Properties window, expand the Padding category, and then select <Expression…>
in the Left property drop-down list.

7. Replace the default expression with the following:

=2 + (Level("RecursiveGroup") * 20) & "pt"

This expression increases the padding used to indent the detail row as the level number
increases.

8. Click OK.

9. Click the detail row handle in the table.

10. In the Properties window, expand the Font property, and then select <Expression…> in
the FontWeight property drop-down list.

11. Replace the default expression with the following:

=IIf(Level ("RecursiveGroup")=0, "Bold", "Normal")

This expression uses bold text when rendering the highest-level employees in the
report.

12. Click OK.

13. Save and then preview the report, which should now look like this:

Using the Recursive Keyword

The Recursive keyword acts as a modifier to any aggregate function with the purpose of return-
ing a value that includes not only the detail rows, but also the value of the parent row in a
group. The keyword must be placed after the Scope argument in an aggregate function.

Chapter 7: Building Advanced Reports 193

6-2250-7.book Page 193 Tuesday, March 21, 2006 3:45 PM
In this procedure, you’ll use the Recursive keyword with the aggregate functions Count and
Sum.

Use Recursive aggregate functions

1. Click the Layout tab, right-click the Employee Count cell in the detail row, and then
select Expression.

2. Enter the following expression:

=Count(Fields!EmployeeKey.Value,"RecursiveGroup",Recursive)

3. Click OK.

4. Right-click the Total Salary cell in the detail row, and then click Expression.

5. Modify the expression so it looks like this:

=Sum(Fields!Salary.Value,"RecursiveGroup",Recursive)

This expression calculates the total salaries for the employees in levels below the current
row and includes the salary for the current row.

6. Click OK.

7. Right-click the Salary of Reports cell in the detail row, and then click Expression.

8. Change the expression so it looks like this:

=Sum(Fields!Salary.Value,"RecursiveGroup",Recursive)-Sum(Fields!Salary.Value)

This expression subtracts the salary of the current employee from the recursive aggrega-
tion so only the value of the employees below the current employee is returned.

9. Click OK.

10. Save and then preview the report using a zoom factor of 75 percent to confirm that the
top of the report now looks like this:

194 Part II: Authoring Reports

6-2250-7.book Page 194 Tuesday, March 21, 2006 3:45 PM
Compare the difference in the results of the Total Salary column and the Salary of
Reports column. If you want a parent row’s value aggregated with the lower levels, sim-
ply use an aggregation with the Recursive keyword to get a result like the Total Salary col-
umn. If you don’t want the parent row’s value included, you’ll need to deduct the
current row to get results shown in the Salary of Reports column.

Creating an Analysis Services Data Source and Dataset

Using Analysis Services data in a report is very similar to using relational data. You still need
to define a data source, create a dataset, and add fields to the report. However, when creating
a dataset, you write a query using MDX instead of SQL. The procedures in this section will
lead you through the creation of an Analysis Services data source and dataset, as well as an
examination of an existing report to put these concepts into context.

Important To perform the procedures in this section, you must have Analysis Services
installed on your computer, and you must have restored the Analysis Services database by
following the instructions in “Installing and Using the Practice Files” in the Introduction to
this book.

Analysis Services uses MDX to query its OLAP database. An MDX query is similar to a SQL
query in that it has a SELECT, FROM, and WHERE clause. However, where SQL is designed
to deal with only a two-dimensional structure of rows and columns, MDX is designed to deal
with the multidimensional OLAP structure. Because of its structural differences from SQL,
you can add an MDX query to a dataset using either the Generic Query Designer or the MDX
Query Builder graphical user interface (GUI).

If you’re new to OLAP, MDX queries can seem pretty daunting to construct, but with lots of
practice, you’ll be rewarded with access to a rich and powerful source of data for reporting. A
more complete explanation of MDX is beyond the scope of this book, but you can start learn-
ing more about this subject using SQL Server Books Online.

The easiest way to build an OLAP report is to use the MDX Query Builder to create datasets.
You can drag and drop OLAP attributes and measures to define what OLAP objects should be
included in the MDX SELECT statement and which objects should be included in the MDX
WHERE clause. The data source used specifies the information for the From statement.

In this procedure, you’ll use the MDX Query Builder to create an Analysis Services data source
and datasets for the Year Over Year Sales report.

Build an Analysis Services Data Source and Dataset

1. Right-click the Reports folder in the project My Adventure Works, point to Add, and
then click Existing Item to add the Year over Year Sales.rdl saved in the C:\Documents
and Settings\<username>\My Documents\Microsoft Press\rs2005sbs\chap07 folder.

Chapter 7: Building Advanced Reports 195

6-2250-7.book Page 195 Tuesday, March 21, 2006 3:45 PM
This report compares sales amounts for the selected year to those of the prior year.
Using an MDX query makes this comparison very easy, because the previous period can
be defined as a calculation in the database.

2. Double-click Year over Year Sales.rdl to open the report, and then click the Data tab.
Click OK to close the error message that indicates the connection to the database can-
not be made.

You’ll correct the connection error by creating a new dataset for this report.

3. Click the Edit Selected Dataset button to the right of the Dataset drop-down list to dis-
play the Dataset dialog box..

4. In the Data Source drop-down list, click New Data Source.

5. Change the name of this data source from DataSource1 to rs2005sbsOLAP, and then
click Microsoft SQL Server Analysis Services in the Type drop-down list.

6. Click Edit, enter localhost in the Server Name box, click rs2005sbs in the Select Or
Enter A Database Name drop-down list, and then click OK three times to close all dialog
boxes.

The MDX Query Builder is now open, and your screen looks like this:

7. Expand Product in the Metadata tree, drag Product Categories to the area of the MDX
Query Builder labeled Drag Levels Or Measures Here To Add To The Query.

8. Expand OrderDate in the Metadata tree, and then drag CalendarYear to the right of the
Product column in the query builder.

196 Part II: Authoring Reports

6-2250-7.book Page 196 Tuesday, March 21, 2006 3:45 PM
9. Expand Measures, and then drag Prior Year Sales to the position to the right of the
CalendarYear column.

10. Expand the two Reseller Sales folders below the Measures folder, and then drag Sales
Amount to the position to the right of the Prior Year Sales column.

All of the columns in the query builder will be included in the MDX SELECT statement,
and will be available as dataset fields that are used in the Year Over Year Sales report.

11. In the Dimension drop-down list above the query builder columns, select Order Date.
Select CalendarYear in the Hierarchy drop-down list, select 2004 in the Filter Expres-
sion drop-down list, and click the Parameters check box.

Your screen should look like this:

Setting criteria in this area of the query builder creates a subcube for your query to limit
the amount of data that must be read to resolve the query. In this case, the query will be
limited to the part of the cube that contains data for the year 2004. By specifying this cri-
teria as a parameter, a second dataset is automatically created, OrderDateCalendarYear.
This second dataset will execute a query at run time to build a list of years that will be
used for the Available Values dataset of a report parameter. The default value is 2004.

Using an Analysis Services Dataset

Once the Analysis Services dataset is created, you can use field expressions in a data region or
report item to organize data in your report. When the MDX query executes, the result is a flat-
tened rowset that can be used almost like the results from a SQL query. You can also use the

Chapter 7: Building Advanced Reports 197

6-2250-7.book Page 197 Tuesday, March 21, 2006 3:45 PM
Hidden and ToggleItem properties on group rows to create a drilldown report similar to the one
you developed earlier in this chapter.

In this procedure, you’ll examine the use of aggregate functions and report parameters with
Analysis Services data.

Explore the use of Analysis Services data in a table

1. Click the Layout tab, click the table, and then click the table1_Category header to select
the entire row so the table looks like this:

Notice the use of the Sum function in the header rows with the Sales Amount and Prior
Year Sales measures, just like with a SQL dataset.

2. Click Report Parameters in the Report menu. Change the Prompt from CalendarYear to
Year.

This parameter was created when you selected the Parameters check box while creating
the OLAPDetail dataset. At that point, the fields ParameterValue and ParameterCaption
were created as part of a new dataset, OrderDateCalendarYear. Additionally, the Order-
DateCalendarYear report parameter was created.

3. Click OK, save the project, and then click the Preview tab to view the report. Spend
some time exploring the report by toggling the category and subcategory rows to review
the product details, and then close the project when you’ve finished.

Chapter 7 Quick Reference

To Do this

Use a report parameter value
as a variable

Click Report Parameters on the Report menu while a report is in Layout
mode, click Add, and then provide a name and data type for a report pa-
rameter. Optionally, provide a list of available values or a default value. Use
the report parameter value in an expression using the following syntax:
Parameters!ObjectName.Value.

Display the label of a report
parameter

Add the following expression to a textbox in a report:
Parameters!ObjectName.Label.

Use a query parameter Add a parameter to the WHERE clause of a dataset query, such as: WHERE
Year = @Year. Update the corresponding report parameter, such as Year,
to specify the appropriate data type, and optionally the list of available val-
ues or a default value.

198 Part II: Authoring Reports

6-2250-7.book Page 198 Tuesday, March 21, 2006 3:45 PM
Use a report parameter as a
filter

To filter all data regions in a report, click the Data tab, click the dataset in
the Dataset drop-down list, and then click the Edit Selected Dataset button.
Click the Filters tab, and then select the expression that corresponds to the
report parameter’s value.

or

To filter a data region, right-click the data region in the design grid, and
then click Properties. Click the Filters tab, and then select the expression that
corresponds to the report parameter’s value.

or

To filter a grouping level, right-click the group row in the design grid, and
then click Properties. In the Properties window, click the ellipsis button for
the Grouping property, click the Filters tab, and then select the expression
that corresponds to the report parameter’s value.

Add an action Right-click a textbox or an image, click the ellipsis button for the Action
property in the Properties window, and then click the option for the type of
action to add. Enter the bookmark identifier, report name, or URL to which
the action will direct the user. If a target report has a report parameter, click
Parameters, and then select a report parameter in the Parameter Name
drop-down list and an expression in the Parameter Value list box.

Create a drilldown report Click the row handle of the detail row and change its Hidden property to
True in the Properties window. In the ToggleItem property for the same row,
click the name of the textbox to use as a toggle for the visibility of the detail
row.

Add a subreport Open the Toolbox window, click Subreport, point to the target destination,
and click to place the subreport. Right-click the subreport, and then enter
the name of the subreport if it isn’t in the same project folder as the host
report, or click to select a report from the Subreport list box if it is in the
same project folder.

Group relational data in a
recursive hierarchy

In the Properties window, click the ellipsis button in the Grouping property
for the detail row of a data region or click Edit Group to open the Grouping
And Sorting Properties dialog box for the group row in a data region. Click
the field expression in the Group On list box to identify a unique row and
select the field expression in the Parent Group drop-down list to identify a
parent row.

Identify levels in a recursive
hierarchy

Use the Level function in an expression, using the group name as scope. For
example, for the group RecursiveGroup, use the following expression:
=Level("RecursiveGroup").

Aggregate data in a recursive
hierarchy

Add the Recursive keyword to the aggregate function, =Function(Expres-
sion,Scope,Recursive). For example, to count employee rows in a recur-
sive group and the parent row, use the following expression:
=Count(Fields!EmployeeKey.Value, "RecursiveGroup", Recursive).

Query an Analysis Services
database

Create a dataset using the Microsoft OLE DB Provider for OLAP Services 9.0,
and then, using the MDX Query Builder, drag objects from the Metadata
tree to build an MDX query.

To Do this

199

Chapter 8

Building Report Models

After completing this chapter, you will be able to:

■ Create a report model project to support ad hoc reporting.

■ Use the Report Model Wizard to autogenerate a model.

■ Use Visual Studio to format, reorganize, and extend a report model.

■ Deploy and secure a report model.

In the preceding chapters of Part II, “Authoring Reports,” you learned how to use the Visual
Studio environment to develop reports for broad distribution. Authoring reports for Reporting
Services requires you to understand the data structures and relationships of the source data as
well as how to create queries that return the data that will be presented in reports. This level of
understanding is expected when you are an IT professional responsible for supporting report-
ing in an organization and is common among many power users in departmental workgroups.
Most of the reporting community doesn’t typically possess the technical knowledge required
to use Visual Studio to author reports, although many would certainly benefit from the ability
to create their own reports on demand. To make the process of accessing data and construct-
ing reports easier for this group, you can create a user-friendly abstraction of SQL Server data
structures, known as a report model. In this chapter, you learn about the composition of a
report model, how to create and maintain a report model, and how to put a report model into
production.

Understanding Report Models
A report model describes tables and columns found in a data source as well as the relationships
between them in order to shield the complexities of the underlying data source from users who
want to create their own simpler reports. A report model is stored in a Semantic Model Definition
Language (SMDL) file, which is an XML schema analogous to Report Definition Language (RDL)
in that it is a definition that can be used by another application to eventually produce a report. In
Chapter 15, “Creating Reports with Report Builder,” you’ll learn how to use the report model file
to easily create ad hoc reports.

A report model contains a hierarchy of objects whose purpose is to represent the data struc-
tures and relationships in business terms. A folder is an optional object at the highest level of
the hierarchy within a model and is used to organize objects logically within the model to help
users find related information or to extend access to certain objects to a limited group of
users. A model always contains at least one entity, which can also be the highest level in the

6-2250-7.book Page 199 Tuesday, March 21, 2006 3:45 PM

200 Part II: Authoring Reports

model hierarchy if it isn’t moved into a folder. By default, one entity is created for each table in
the data source view (DSV) and contains a collection of attributes corresponding to the col-
lection of columns in the related table. Additionally, an entity might contain special attributes
that don’t exist in the DSV, such as expressions that perform calculations on data selected for
a report or aggregations to sum or average numeric values. An entity can also contain a role,
which is a special object that defines a relationship between entities. Fundamentally, these
report model objects are used to construct a SQL query based on the placement of these
objects in a report layout designer.

Creating a Report Model
To create a report model, you can use the Model Designer that is integrated with Visual Studio
as one of the business intelligence project templates. This method offers the most flexible
approach for designing a report because you have control over which rules are used to gener-
ate the model, and you can change the model after it’s generated. You can also generate mod-
els using SQL Server Management Studio or Report Manager.

Generating a report model in Visual Studio is quite easy. You start by creating a report model
project, and then you add a data source to connect to a SQL Server database. After defining
this connection, you create a DSV to identify the specific tables to be used for building a report
model as well as the logical relationships between those tables. Once these two items are
added to your project, you use the Report Model Wizard to automatically generate a report
model based on the definitions contained in the DSV.

Adding a Report Model Data Source

You learned about data sources in Chapter 3, “Building Your First Report.” A data source for
a report model project is similar to a data source for a report project. It defines the server and
database that contains the data to be used in ad hoc reports as well as the credentials used for
authentications when queries are executed. However, a data source created for a report project
cannot be added to a report model project. You must create a new data source definition to
use the Model Designer in Visual Studio. Alternatively, you can add a data source from an
Analysis Services project to the report model project. In either case, it’s important to under-
stand that a data source for a report model project can use the SQL Server provider only.

In this procedure, you’ll create a new report model project and add a data source to connect
to the rs2005sbsDW database using Windows authentication.

Add a report model data source

1. Start SQL Server Business Intelligence Development Studio. On the File menu, click
New, and then click Project.

2. In the New Project dialog box, click the Report Model Project template in the Business
Intelligence Projects folder.

6-2250-7.book Page 200 Tuesday, March 21, 2006 3:45 PM

Chapter 8: Building Report Models 201

3. Type in a name for the project, Reseller Sales Report Model, and, if necessary, type
the following location for the project: C:\Documents and Settings\<username>
\My Documents\Microsoft Press\rs2005sbs\Workspace. Click OK.

4. Right-click the Data Sources folder in Solution Explorer, and then click Add New Data
Source to open the Data Source Wizard.

5. Click Next to go past the welcome page, and then click New.

6. In the Connection Manager dialog box, type the server name localhost, click
rs2005sbsDW in the Select Or Enter A Database Name drop-down list, and then
click OK.

Note If you already have a connection created for the rs2005sbsDW database, you
can skip this step.

7. On the Select How To Define The Connection page of the Data Source Wizard, make
sure localhost.rs2005sbsDW is selected, click Next, and then click Finish.

Adding a Data Source View

A data source view (DSV) is an XML file which contains the metadata about the structures and
relationships in a data source. It isn’t necessary to create a report model that uses all tables or
views in the underlying data source. Using the DSV, you can use a subset of tables and views
to control access to the data. You can also consolidate information from multiple tables into a
logical table known as a Named Query, which is like creating a view in a relational database.
Similarly, you can use a Named Calculation to add a column to a table, much like creating a
derived column in a view. Whether using a Named Query or a Named Calculation, no change
is made to the underlying relational database. Thus, using a DSV to manipulate table struc-
tures is quite advantageous when you don’t have permissions to change physical structures,
but need to restructure data for reporting purposes.

In this procedure, you’ll create a DSV from a subset of tables in the rs2005sbsDW database.

Add a DSV

1. Right-click the Data Source Views folder in Solution Explorer, and then click Add New
Data Source View to open the Data Source View Wizard.

2. Click Next to bypass the welcome page, click Rs2005sbs DW in the Relational Data
Sources list if it isn’t already selected, and then click Next.

3. Move the following tables from the Available Objects list to the Included Objects list:
DimGeography, DimProduct, DimReseller, DimSalesTerritory, DimTime, and Fact-
ResellerSales.

6-2250-7.book Page 201 Tuesday, March 21, 2006 3:45 PM

202 Part II: Authoring Reports

The Data Source View Wizard dialog box looks like this:

4. Click Next, and then click Finish to close the wizard.

5. Double-click Rs2005sbs DW.dsv in Solution Explorer to open the DSV.

Your screen looks similar to this:

In the rs2005sbsDW database, there are three tables that contain product information:
DimProduct, DimProductSubCategory, and DimProductCategory. However, including

6-2250-7.book Page 202 Tuesday, March 21, 2006 3:45 PM

Chapter 8: Building Report Models 203

these three tables in the DSV will create three entities in the report model, which can be
confusing to users when they navigate the model while building a report. To avoid this
confusion, you can replace the DimProduct table with a Named Query that includes
data from all three tables. This consolidation of tables in the DSV will result in a single
Product entity in the report model.

6. Locate the DimProduct table, right-click the table caption, point to Replace Table, and
then click With New Named Query.

Note With a higher screen resolution, you can see a larger section of the DSV at once.
You can use the horizontal or vertical scroll bars to navigate to other sections of the DSV.

7. Click the Add Table button in the Query Definition toolbar, click DimProductCategory,
and then, while pressing Shift, click DimProductSubCategory in the Query Definition
Window.

8. Click Add, and then click the Close button to close the Add Table dialog box.

9. In the Diagram pane, select the ProductSubCategoryName check box in the Dim-
ProductSubCategory table and select the ProductCategoryName check box in the
DimProductCategory table.

Your screen looks similar to this:

The columns from these two additional tables will now be included in the entity created
for DimProduct.

6-2250-7.book Page 203 Tuesday, March 21, 2006 3:45 PM

204 Part II: Authoring Reports

10. Click OK.

Notice that the existing relationships defined in the relational database are included in
the DSV, as indicated by the lines connecting the related tables, which join a foreign key
in one table to a primary key in another table. Also notice the key icon that identifies the
primary key in each table in the DSV.

The FactResellerSales table does not have a primary key defined, because typical data
warehouse design does not require this definition. However, in order to include this
table as an entity in the report model, there must be a primary key. The collection of key
columns in this table can be used as a composite key because each combination of keys
by row is unique. You can create a logical primary key in the DSV to identify this collec-
tion of keys.

11. In the FactResellerSales table, click the ProductKey field, and then, while pressing Ctrl,
click to select each of the other key fields, the last of which is SalesTerritoryKey.

12. Right-click the currently selected group of fields, and then click Set Logical Primary Key.

Your screen looks similar to this:

Adding a Report Model

The Report Model Wizard available in the Model Designer produces a report model from a
DSV you specify. The selected DSV must be based on one data source only and that data
source must be a SQL Server database. Using the wizard, you can change the rules used to
generate the model. Until you better understand the purpose of each object in a report model
and their interrelationships, you should keep the default selections, but it’s nice to have the
ability to make changes under certain circumstances. For example, you might have tables that

6-2250-7.book Page 204 Tuesday, March 21, 2006 3:45 PM

Chapter 8: Building Report Models 205

contain columns that are never used. There is a special rule—disabled by default—that you can
select in the Report Model Wizard to create attributes only for columns that contain data. By
enabling this rule, you won’t have to perform an extra step to delete unnecessary attributes
later.

In this procedure, you’ll use the Report Model Wizard to generate a report model from the
rs2005sbs DW DSV you created in the previous procedure.

Use the Report Model Wizard

1. Right-click the Report Models folder in Solution Explorer, and then click Add New
Report Model.

2. Click Next on the welcome page of the wizard, ensure that Rs2005sbs DW.dsv is
selected on the Available Data Source Views page, and then click Next.

Your screen looks like this:

As you can see here, there are many rules used to generate a report model. You can
learn more about the purpose of each rule at http://msdn2.microsoft.com/en-us
/library/ms183622.aspx.

3. Keep the default selections on the Select Report Model Generation Rules page, and then
click Next.

Since you just created a DSV, the statistics in that file are current.

4. On the Collect Model Statistics page, select Use Current Model Statistics Stored In The
Data Source View.

6-2250-7.book Page 205 Tuesday, March 21, 2006 3:45 PM

206 Part II: Authoring Reports

Your screen looks like this:

5. Click Next, name the model Reseller Sales, and then click Run to generate the report
model.

When the wizard has completed creating the report model, your screen looks like this:

6. Click the Finish button.

6-2250-7.book Page 206 Tuesday, March 21, 2006 3:45 PM

Chapter 8: Building Report Models 207

You have just successfully created a report model that can be deployed to the Report
Server. Once deployed, the report model is available for use in creating ad hoc reports
using Report Builder. However, you should review the model first to make sure that the
model will be useful to your ad hoc reporting community.

Using Management Tools to Build a Report Model
You can also generate a report model from SQL Server Management Studio or from
Report Manager. The report models generated from these management tools are identi-
cal to report models generated using the Report Model Wizard. When using the man-
agement tools, you can also use an Analysis Services cube as a data source, but you are
still limited to one data source per report model. In SQL Server Management Studio, you
connect to Reporting Services, right-click a data source, and then click Generate Model.
In Report Manager, you open a shared data source, and then click Generate Model.

Regardless of the type of data source, you won’t be able to change the rules used to gen-
erate a report model. The report model is automatically deployed to the report server
after it is generated. If you want to edit a report model that is based on a SQL Server data-
base, you can download it from the report server and use the Model Designer to make
any desired changes. However, you don’t have the ability to edit a report model based on
an Analysis Services cube.

Reviewing a Report Model

The Report Model Designer has two views: Tree View and Detail View. The Tree View displays
on the left side of the designer and contains a list of entities. To the right side of the Tree View,
the Detail View displays a list of objects, such as attributes and roles, that are associated with
the currently selected entity in the Tree View. An attribute is created for each column in the
entity’s related table (or named query), but there are also additional attributes that don’t cor-
respond to a table column. For example, at the top of the list for each entity, there is an aggre-
gate attribute that counts the number of records in the entity. Roles enable Report Builder
users to navigate between entities when building a report. You learn about navigating a report
model in Report Builder in Chapter 15.

In this procedure, you’ll explore the report model generated in the previous procedure.

6-2250-7.book Page 207 Tuesday, March 21, 2006 3:45 PM

208 Part II: Authoring Reports

Examine a report model

1. Review the layout of the Report Model Designer.

Your screen looks like this:

Notice there is one entity per table included in the DSV. The default name of the entity
is the name of the table. If the table name includes a capitalized letter in any position
after the first left, a space is inserted before that letter. Additionally, any underscore is
converted to a space. Therefore, a table name like Dim_Product or DimProduct would
result in an entity named Dim Product. Often, the table names used in a database must
conform to certain naming conventions that are not necessarily user-friendly. You can
edit the default names assigned by the Report Model Wizard to a more suitable name,
which you’ll do later in this chapter.

2. Click the Dim Product entity in the Report Model Tree View.

6-2250-7.book Page 208 Tuesday, March 21, 2006 3:45 PM

Chapter 8: Building Report Models 209

Your screen looks like this:

Here you can see that each attribute is preceded by a symbol indicating its data type.
Attributes with a string data type, such as Color or Model Name, are indicated by an icon
depicting the letter “a.” Decimal, float, and integer data types are indicated by an icon
depicting the symbol “#,” as you can see for attributes such as Standard Cost and Safety
Stock Level. Attributes with a data type of date, such as Slowly Changing Dimensions
(SCD) Start Date, have a calendar icon, while a check box icon is used to identify the
Boolean data type for attributes such as Finished Goods Flag.

Toward the bottom of the list in the Detail View of the report model is an item named Fact
Reseller Sales. Note that this item is not an attribute, but a role. As a role, this item repre-
sents the relationship defined in the DSV between the DimProduct and FactResellerSales
tables. The Fact Reseller Sales role is indicated by a multilayer icon, which lets you know
there is a one-to-many relationship between the two tables. One-to-one relationships are
identified with a single-layer icon.

3. Click the Fact Reseller Sale entity in the Report Model Tree View, and then expand the
Unit Price attribute.

6-2250-7.book Page 209 Tuesday, March 21, 2006 3:45 PM

210 Part II: Authoring Reports

Your screen looks like this:

For each numeric attribute, the Report Model Wizard creates Total, Avg, Min, and Max
numeric aggregations. These aggregate attributes provide an easy way for users to
include aggregate functions in their reports.

4. Click the Unit Price attribute in the Detail View, and then, in the Properties window, find
the DefaultAggregateAttribute property.

The Properties window looks like this:

This property determines which aggregate a Report Builder user will see first when
browsing the attributes in the Fact Reseller Sale entity. In this case, Report Builder users
can expand Total Unit Sales to see the associated aggregate attributes: Avg Unit Sales,
Min Unit Sales, Max Unit Sales, and Unit Sales.

5. Click the Dim Time entity in the Tree View, and then expand the Full Date Alternate Key
attribute.

6-2250-7.book Page 210 Tuesday, March 21, 2006 3:45 PM

Chapter 8: Building Report Models 211

Your screen looks like this:

For date attributes such as this, the Report Model Wizard creates year, quarter, month,
and day variations, as well as a first and last aggregation. Report Builder users can
choose to use any one of these attributes in a report.

The Full Date Alternate Key attribute represents a date value, but this would not be obvi-
ous to a user who wants to include a date in a report. In this case, you should rename the
attribute so it is clearer to users what the attribute represents. You’ll perform this task
later in this chapter.

Modifying a Report Model
You can use the Model Designer in Visual Studio to edit a report model that is based on a SQL
Server data source, whether you use the Model Designer or SQL Server Management Studio to
generate the report model. You will likely want to rearrange objects to simplify navigation,
modify object properties to change default behavior, and add new objects to extend the range
of information that users can include in reports. You should plan to go through several cycles
of fine-tuning your report model as users get more experience working with Report Builder
and are able to provide more specific feedback about desired report model improvements.

Before releasing a report model to production, you should review the report model and con-
sider whether any structural changes are required. Most often, you’ll want to change object
names to reflect the way users think about the business. You should also review object prop-
erties that affect formatting, sorting, and other aspects of data presentation, and make

6-2250-7.book Page 211 Tuesday, March 21, 2006 3:45 PM

212 Part II: Authoring Reports

changes to these properties so that users can focus on creating and sharing information rather
than improving the appearance of reports.

In addition to changing objects themselves, you might need to rearrange objects to make it
easier for users to find and use the report model objects to create reports using Report Builder.
One way to organize objects is to create folders to group similar objects together, while alter-
natively, you can use perspectives to narrow the scope of available objects for different groups
of users. Another way to improve the report model’s structure is to change the sequence of
objects by placing frequently used objects at the top of a list.

Restructuring a model by adding new objects is yet another option. Over time, your DSV
might need to be updated to reflect new columns in the underlying data source. You can then
update the report model by adding source fields that correspond to these new columns. You
might also discover you need to add expressions to the report model to have a central location
for commonly used calculations so users don’t need to continually re-create them in each ad
hoc report.

Changing Model Objects

While generating a report model automatically from a DSV saves you a lot of time by relieving
you from building each object manually, it’s unlikely that the generated report model is the
best possible model for your users. For example, database naming conventions usually have
meaning for database administrators and application developers, but often these naming con-
ventions don’t correspond to business terms familiar to users. One of the first tasks to under-
take after generating a report model is to assign objects more suitable names wherever
necessary.

Additionally, you should change object properties so users can produce nicely formatted
reports with minimal effort. Even though users can apply the same changes using Report
Builder features, they will appreciate having a model that defines behaviors like appearance,
sort direction, and alignment so they won’t have to repeatedly make these changes in each
report they build. You should also review each attribute for appropriateness and delete those
users won’t need to reduce clutter in the report model.

In this procedure, you’ll change the name of entities, attributes, and roles.

Rename report model objects

1. Right-click Fact Reseller Sale, click Rename, and then type Reseller Sales.

2. Click Dim Geography in the Tree View. In the Properties window, change the (Name)
property to Geography.

You can change the name of the object either by changing its (Name) property value in
the Properties window or by renaming it directly in the designer. The result is exactly
the same.

6-2250-7.book Page 212 Tuesday, March 21, 2006 3:45 PM

Chapter 8: Building Report Models 213

3. Click #Dim Geographies in the List view, and then change its (Name) property to Count
Geographies.

4. Click Dim Resellers, and then change its (Name) property to Resellers.

5. Repeat the previous three steps for each of the other entities by removing Dim from the
entity name and renaming the count attribute to replace #Dim with Count and renam-
ing roles to remove the word Dim or Fact from the autogenerated name.

6. Click Product in the Tree View, and then rename Fact Reseller Sales as Reseller Sales.

7. Click Time in the Tree View, click Full Date Alternate Date Key and change its (Name)
property to Date. In addition, rename the three roles to remove the word Fact from the
name: Reseller Sales, Reseller Sales (Due Date), Reseller Sales (Ship Date).

Your screen looks like this:

In this procedure, you’ll change the Format property for selected attributes.

Format numeric values

1. Click the Reseller Sales entity in the Tree View.

2. In the Detail View, click Sales Amount, find the Format property in the Properties win-
dow, and then type C2.

This property value will format the data as currency with two decimal places. You use
the same Visual Basic .NET formatting strings for report models that you use in the
Report Designer, as you learned in Chapter 4, “Developing Basic Reports.”

6-2250-7.book Page 213 Tuesday, March 21, 2006 3:45 PM

214 Part II: Authoring Reports

Tip Even though you can make formatting changes in Report Builder, such changes
must be repeated for each report. To maintain the same formatting for attributes across
all reports and to simplify the process of building a report, it is recommended to set the
desired formatting for attributes in the report model.

3. Expand Sales Amount, and then repeat the previous step for the aggregate attributes of
Sales Amount: Total Sales Amount, Avg Sales Amount, Min Sales Amount, and Max Sales
Amount.

4. Change the Format property for Order Quantity and its four numeric aggregations to
N0.

This property value will format the data as numeric with no decimal places.

In this procedure, you’ll modify the SortDirection property for selected attributes.

Change sort direction

1. In the Tree View, click the Time entity.

Currently, the Calendar Year and Fiscal Year attributes are sorted in ascending order,
while the Calendar Quarter and Fiscal Quarter attributes are sorted in descending order.
You’ll change these attributes’ properties so Report Builder users see the most recent
year first (descending) and see quarters listed in ascending order.

2. Click the Calendar Year attribute, and, in the Properties window, change the SortDirection
property to Descending.

3. Repeat the previous step for the attribute Fiscal Year.

4. Click the Calendar Quarter attribute, and in the Properties window, change the SortDirection
property to Ascending.

5. Repeat the previous step for the attribute Fiscal Quarter.

In this procedure, you’ll change the Alignment property of selected attributes.

Change alignment

1. Click the Reseller Sales entity in the Tree View, and then click the Order Quantity
attribute.

2. In the Properties window, locate the Alignment property, and then select Right in the
property value’s drop-down list.

3. Repeat the previous step for each of the aggregate attributes of Order Quantity and for
the Sales Amount attribute, as well as each of its aggregation attributes.

In this procedure, you’ll delete selected attributes.

6-2250-7.book Page 214 Tuesday, March 21, 2006 3:45 PM

Chapter 8: Building Report Models 215

Delete objects

1. Click the Product entity, right-click the German Description attribute, click Delete, and
then click OK to confirm deletion.

If a table column won’t be used in any report model contained in the same project, it can
be removed from the DSV. If it will be used in one or more report models, but not all
report models, it can be removed from a specific report model. Later in this chapter,
you’ll learn how to selectively include attributes in a simplified view of a report model by
using a perspective as an alternative to deleting attributes.

2. Repeat the previous step to remove each of the non-English product descriptions: Chinese
Description, Arabic Description, and Thai Description.

3. Click the Time entity, right-click the Count Times attribute, click Delete, and then
click OK.

When working on a model created by the Report Model Wizard, you’ll want to carefully
review all attributes that were created and prune the model by deleting any unwanted
attributes. There are many more attributes in this particular model that should be con-
sidered for deletion, but since this model won’t be used for production, you don’t need
to be as thorough as you should be with your own models.

Organizing Model Objects

In addition to changing model objects, you can improve a report model by changing the
arrangement of objects within the report model. You can use folders to group related entities
or attributes together so users can find them more easily. Regardless of whether you decide to
use folders, you can rearrange objects in the Tree View or the Detail View of the Model
Designer as another method for organizing related items. For example, you can change the
order of attributes to show the most frequently used attributes first or to arrange attributes in
a sequence that is familiar to users so they can navigate the report model efficiently when
using Report Builder.

Once you’ve organized objects by using folders and by changing the sequence of objects, you
might want to create limited views of objects by adding perspectives to the data model. A per-
spective is simply a subset of the entities and attributes available in a model. This feature is
handy when you want to build one model, but different groups of users require only some of
the objects from the model. Each perspective appears as a separate model to users of Report
Builder.

In this procedure, you’ll add a folder to the report model and move entities into the folder.

6-2250-7.book Page 215 Tuesday, March 21, 2006 3:45 PM

216 Part II: Authoring Reports

Place objects in a folder

1. Right-click Model in the Tree View, point to New, and then click Folder.

2. In the Tree view, rename NewFolder as Geographies.

Your screen looks like this:

3. Click the Geography entity and drag it into the Geographies folder.

4. Repeat the previous step to move the Sales Territory entity into the Geographies folder.

In this procedure, you’ll change the sequence of attributes within the Geography entity.

Rearrange objects

1. Open the Geographies folder, click the Geography entity, right-click the Country Region
Name attribute, and then click Move Up. Repeat until Country Region Name is listed
below the Geography Key attribute.

2. Repeat the previous step to move State Province Name below Country Region Name.

6-2250-7.book Page 216 Tuesday, March 21, 2006 3:45 PM

Chapter 8: Building Report Models 217

Your screen looks like this:

In this procedure, you’ll add a perspective to the report model that includes only selected
attributes from the Product, Time, and Sales Territory entities.

Create a perspective

1. Right-click Model in the Tree View, click New, and then click Perspective to display the
Edit Perspective dialog box.

2. Expand Product to show its attributes, clear the Product check box to deselect all of the
attributes, and then select the following attributes: Color, Size, Weight, Model Name, Prod-
uct Category Name, and Product Sub Category Name. In addition, select the Reseller Sales
role.

6-2250-7.book Page 217 Tuesday, March 21, 2006 3:45 PM

218 Part II: Authoring Reports

The Edit Perspective dialog box looks like this:

Notice that the Product Name and Product Alternate Key attributes are not shown in the
listing. These were identified by the Report Model Wizard as identifying attributes for
the Product entity, and therefore will be included in all perspectives automatically. You
can see the identifying attributes for an entity by clicking the ellipsis button in the
entity’s IdentifyingAttributes property.

3. Scroll down to locate the Time entity, expand the Time entity, and deselect all attributes
except Month Name, Calendar Quarter, Calendar Year, Fiscal Quarter, and Fiscal Year.
Select the three associated Time roles.

The Edit Perspective dialog box looks like this:

6-2250-7.book Page 218 Tuesday, March 21, 2006 3:45 PM

Chapter 8: Building Report Models 219

4. Expand the Geographies folder, expand the Sales Territory entity, and then deselect all
attributes except Sales Territory Country and Sales Territory Group. Select the associated
roles.

The Edit Perspective dialog box looks like this:

5. Click OK to close the Edit Perspective dialog box.

6. Right-click the perspective, click Rename, and type Simple Reseller Sales.

Your screen looks like this:

6-2250-7.book Page 219 Tuesday, March 21, 2006 3:45 PM

220 Part II: Authoring Reports

Adding Source Fields

Changing business requirements often drive changes to data structures in source systems
used for reporting. Such changes could be made physically to the database tables or logi-
cally within the DSV. When these changes occur after you’ve created a report model, you
can incorporate new columns by adding a source field to the report model. You can also
regenerate the report model, but any objects you deleted will be added to the report model
again.

In this procedure, you’ll create a derived column in the DSV and add it to the report model as
a source field.

Add a source field

1. In Solution Explorer, double-click Rs2005sbs DW.dsv to open the DSV, right-click the
DimProduct table caption, and then click Edit Named Query.

2. In the SQL query window, type a comma after the DimProductCategory.ProductCategory
Name field, and then type the following SQL expression:

ListPrice - StandardCost AS StandardMargin

3. Click OK to close the Edit Named Query dialog box.

The Edit Named Query dialog box looks like this:

4. Save the DSV.

5. Switch to the Model Designer, right-click Product in the Tree View, click Autogenerate,
and then click Yes to confirm.

6-2250-7.book Page 220 Tuesday, March 21, 2006 3:45 PM

Chapter 8: Building Report Models 221

6. Click Next on all pages of the Report Model Wizard to accept all defaults, click Run on
the Completing the Wizard page, and then click Finish.

Now that you added the StandardMargin column to the Named Query, the Report
Model Wizard detects it. The Standard Margin attribute and aggregate attributes are
added to the model—along with all the attributes that you deleted in an earlier proce-
dure! In situations when you don’t want to delete the undesired attributes once again,
you can simply manually add the derived column as a source field.

7. Change the Format property for the Standard Margin attribute and its aggregation
attributes to C2.

After creating a new attribute, be sure to set the Format property. You should also evalu-
ate whether the new attribute should be included in any of the report model’s perspec-
tives and add it where applicable.

8. Click Model in the Tree View, right-click the Simple Reseller Sales perspective, click Edit,
expand the Product entity, and then select the check box for Standard Margin to add the
attribute to the perspective.

Your screen looks like this:

Notice that selecting the attribute will automatically select its aggregation attributes as
well. You can deselect any of the aggregation attributes if you prefer not to include them
in the perspective.

9. Click OK to close the Edit Perspective dialog box.

6-2250-7.book Page 221 Tuesday, March 21, 2006 3:45 PM

222 Part II: Authoring Reports

Adding Expressions

You can use expressions to add calculations to a report model. To build an expression, you
can use standard mathematical operations with attributes defined in the report model. As an
example, you can compute an extended amount for a sales order line item by multiplying the
quantity attribute by the amount attribute. The Model Designer also provides a variety of func-
tions that you can use to create more complex expressions. Using these functions, you can cre-
ate expressions that perform logical operations, manipulate strings or dates, convert data
types, or aggregate numerical data.

In this procedure, you’ll add an expression to the report model that sums the values of three
attributes.

Add an arithmetic expression

1. Click Reseller Sales in the Tree View, right-click a blank area of the Detail View, point to
New, and then click Expression.

The Define Formula dialog box looks like this:

2. Click the Functions tab, and then expand the folders to review the available functions.

Although you won’t be using functions to build this expression, you should be famil-
iar with the functions that are available. Functions are organized by type into separate
folders.

3. Click the Fields tab. In the Fields list, double-click Sales Amount to add it to the For-
mula box, click the Plus Sign button, double-click Tax Amt, click the Plus Sign button
again, and then double-click Freight.

6-2250-7.book Page 222 Tuesday, March 21, 2006 3:45 PM

Chapter 8: Building Report Models 223

The Define Formula dialog box looks like this:

4. Click OK to close the Define Formula dialog box.

5. In the Detail View, click the NewExpression attribute, and then, in the Properties win-
dow, change its (Name) property to Total Due.

6. In the Properties window, change the Nullable property of the Total Due attribute to
True.

The Nullable property must be set to True for expressions even if the Nullable property
of the component attributes is set to False.

7. Click Model in the Tree View, right-click the Simple Reseller Sales perspective, click Edit,
expand the Reseller Sales entity, and then select the Total Due check box to add the
attribute to the perspective, and then click OK to close the Edit Perspective dialog box.

Managing a Report Model
Because a report model is simply a definition file, it’s pretty easy to manage. You make it avail-
able to users by publishing it to a report server and then control access by applying security.
Once a report model is in production, you might need to update the report model to reflect
changes in the underlying data source, in which case you edit the report model and republish
the updated SMDL file to the report server. Remember, however, that you can only modify a
report model when it’s based on a SQL Server database. You need to regenerate a report
model file when an Analysis Services cube is the data source.

6-2250-7.book Page 223 Tuesday, March 21, 2006 3:45 PM

224 Part II: Authoring Reports

After you create and refine a report model, you’re ready to place the report model on the
report server so it can be used by users to build ad hoc reports. You use the Deploy command
in Visual Studio if you created the model using the Model Designer. A report model that you
create from the management tools, either Report Manager or SQL Server Management Studio,
is automatically deployed after it’s generated. Once a report model has been deployed, you’ll
need to apply security using your preferred management tool to restrict access to the report
model to authorized users.

Publishing a Report Model

A report model file is added to the report server just like a report file. That is, if you are work-
ing with a project in Visual Studio, you can use the Deploy command to add it to the server.
When you use the Deploy command, not only is the report model made available on the
server, but the data source is also added to the server if it doesn’t already exist. You need to
be careful when deploying a report model to avoid overwriting an existing model with the
same name; otherwise, any reports that were based on the original report model will no
longer function.

In this procedure, you’ll deploy the Reseller Sales Report Model.

Deploy a report model project

1. Right-click the Reseller Sales Report Model project in Solution Explorer, and then click
Deploy.

2. When the deploy process is completed, open Microsoft Internet Explorer, and then type
the URL http://localhost/Reports to open the Report Manager.

3. Click the Models folder link.

6-2250-7.book Page 224 Tuesday, March 21, 2006 3:45 PM

Chapter 8: Building Report Models 225

Your screen looks like this:

The Models folder was created during the deployment process based on the project
properties, in the same way that a project folder for standard reports is created when
they are deployed from Report Designer. It contains a link to Reseller Sales, which you
can identify as a report model by its icon.

4. Click the Reseller Sales report model link.

Your screen looks like this:

6-2250-7.book Page 225 Tuesday, March 21, 2006 3:45 PM

226 Part II: Authoring Reports

On the Properties tab, you can add a description to the report model, modify data
sources, and set security. The Dependent Items tab shows all reports created with
Report Builder from this report model, but because this report model was just deployed,
there are currently no reports. In Chapter 15, you learn how to use this report model to
create ad hoc reports.

5. Click Back in Internet Explorer to return the Contents tab of the Models folder.

Notice the Report Builder button on the Report Manager toolbar. This button is used to
launch the Report Builder application and is available from any folder in Report Man-
ager as long as permissions have been granted. You’ll learn how to set security for a
Report Model in the next procedure.

Securing a Report Model

You apply security to a report model in exactly the same way that you secure other items
deployed to a report server. When a report model is deployed to the server, it inherits the secu-
rity of its parent folder. Unless you change the project properties, the default folder is Models,
to which access is originally granted only to the Content Managers role. Users won’t be able to
build reports using a report model until you add a Browser role to the item’s security defini-
tion. Roles, folder security, and item security (which applies to the report model) is covered in
much more detail in Chapter 10, “Managing Security.” In this section, you learn only the basic
steps required to grant access to a report model.

In this procedure, you’ll grant Browser permissions to the Everyone group for the Reseller
Sales report model.

Add a Browser role to a report model

1. Click the Reseller Sales report model link in the Models folder, and then click the Secu-
rity link on the Properties page.

6-2250-7.book Page 226 Tuesday, March 21, 2006 3:45 PM

Chapter 8: Building Report Models 227

Your screen looks like this:

Both the Models folder and the Reseller Sales report model have inherited permissions
from the Home folder for the group and user roles listed on the Security page. You can
change these settings here.

Notice the only role available now is Content Manager for the Administrators group.

2. Click the Site Settings link (located in the top-right corner), click the Configure Item-
Level Role Definitions link, and then click the link for the Content Manager role.

Your screen looks like this:

6-2250-7.book Page 227 Tuesday, March 21, 2006 3:45 PM

228 Part II: Authoring Reports

Notice that Manage Models is selected, which allows Content Managers to add, change,
or delete models and their properties. Also, since the View Models task check box is
selected, Content Managers are, by default, granted permission to use the models to
build reports. Using the Item-Level Role Definitions, you can set default permissions by
role. You’ll learn more about using role-level security in Chapter 10.

3. Click the Home link at the top of the page, click the Models link, click the Reseller Sales
report model link, click the Security link, click Edit Item Security, and then click OK in
the message dialog box.

4. Click New Role Assignment, and then click the Browser link.

Your screen looks like this:

Here you can see that Browsers have the ability to view and use models, but not to man-
age models. You can always create a separate role for browsers that should not have
access to models. In this case, you’re just confirming that the Browser role still defaults
to allow use of report models.

5. Click OK.

6. Type a group name Everyone, select Browser check box, and then click OK.

Now each user assigned to the Everyone group on the report server will be able to use
the Reseller Sales report model. You learn how to build reports using this report model
in Chapter 15.

6-2250-7.book Page 228 Tuesday, March 21, 2006 3:45 PM

Chapter 8: Building Report Models 229

Chapter 8 Quick Reference

To Do this

Create a Report Model project In Visual Studio, click New on the File menu, click Project, click Re-
port Model Project, and then type a name and location for the
project.

Add a data source to a report model
project

In Solution Explorer, right-click the Data Sources folder, click Add
New Data Source, click Next to go past the welcome page of the
wizard, click the New button, type the server name, and then click
the database name in the Select Or Enter A Database Name list box,
click OK, and then click Finish.

Add a data source view to a report
model project

In Solution Explorer, right-click the Data Source Views folder, click
Add New Data Source View, click Next to pass the welcome page of
the wizard, click the data source in the Relational Data Sources list,
add tables or views to the Available Objects list, click Next, and then
click Finish.

Replace a table with a named query in
the DSV

In the Data Source View Designer, right-click the table caption,
point to Replace Table, click With New Named Query, and then up-
date the SQL statement with additional columns, joins, or filters in
the WHERE clause as needed.

Create a report model using the Report
Model Wizard

In Solution Explorer, right-click the Report Models folder, click Add
New Report Model, click Next on the welcome page of the wizard,
select a DSV, click Next, select rules, click Next, select an option to
use current statistics or create new statistics, click Next, assign a
name to the report model, and then click Finish.

Rename a report model object Right-click the object, click Rename, and then type the new name.

or

Edit the (Name) property of the object in the Properties window.

Apply a formatting string to an attribute In the Detail view, select the attribute, and then, in the Properties
window, type a Visual Basic.NET formatting string in the Format
property box.

Change the sort direction of data associ-
ated with an attribute

In the Detail view, select the attribute, and then, in the Properties
window, click the applicable sort direction in the SortDirection
property box.

Change the alignment of text data
associated with an attribute

In the Detail view, select the attribute, and then, in the Properties
window, click the applicable alignment option in the Alignment
property box.

Delete an object Right-click the object, and then click Delete.

Add a folder to a report model project
and move objects into the new folder

In the Tree view, right-click the item that will become the parent
item for the new folder, click New, click Finish, change the (Name)
property of the new folder as appropriate, and then drag objects
into the new folder.

Change the order of an entity’s
attributes

In the Detail view, right-click an attribute, and then click Move Up
or Move Down to reposition the attribute.

6-2250-7.book Page 229 Tuesday, March 21, 2006 3:45 PM

230 Part II: Authoring Reports

Create a perspective Right-click Model in Tree View, or right-click an entity, click New,
and then click Perspective. Select or deselect attributes as needed
to limit the perspective to specific attributes, and then assign a
name to the perspective.

Add a new attribute to the report
model

In the Data Source View Designer, replace the source table with the
same table to include the updated version of the table, or right-
click the table caption, click Edit Named Query, and then type a val-
id SQL expression with an alias to name the derived column. In Tree
view, right-click the applicable entity for the new attribute, click
New, click Source Field, click the NewAttribute attribute in the Detail
view, click the appropriate value for the Binding property in the
Properties window, and modify its properties as necessary.

Add an expression to an entity Right-click the background of the Detail View, click New, and then
click Expression. You can type an expression directly into the dialog
box, or drag and drop objects and functions from the Fields and
Functions tabs, respectively. Change the expression’s (Name) prop-
erty as desired and change the Nullable property to True.

Deploy a report model project using
Visual Studio

Right-click the report model project in Solution Explorer, and then
click Deploy.

Grant user permissions to a report
model for ad hoc reporting at the
item level

In Report Manager, click the link to the report model, click the Se-
curity link, click Edit Item Security, click OK in the message dialog
box, click the New Role Assignment button, type a group or user
name in the Group Or User Name box, select the Browser role check
box, and then click OK.

To Do this

6-2250-7.book Page 230 Tuesday, March 21, 2006 3:45 PM

Part III
Managing the Report Server

In this part:

Chapter 9: Managing Content .233

Chapter 10: Managing Security .271

Chapter 11: Managing Server Components .299

By completing Part II, “Authoring Reports,” you learned not only the basics of authoring
reports, but also advanced techniques you can use to produce a wide variety of useful
reports for your organization. The three chapters of Part III provide you with the skills to
properly manage and secure the reports you create as well as to perform administrative
tasks on the Report Server. These activities are all part of the managing stage of the report-
ing life cycle.

6-2250-7.book Page 231 Tuesday, March 21, 2006 3:45 PM

6-2250-7.book Page 232 Tuesday, March 21, 2006 3:45 PM

233

Chapter 9

Managing Content

After completing this chapter, you will be able to:

■ Publish report definitions and other resources to the Report Server.

■ Arrange content on the Report Server.

■ Create a linked report.

■ Use report properties to manage report content.

■ Control report execution with report properties.

In this chapter, you’ll learn how to manage the content on the Report Server. You start by pub-
lishing several reports. Then, you reorganize content on the Report Server by adding folders,
moving content into the new folders, and creating linked reports. You’ll also work with report
properties to control both how reports interact with data sources to retrieve data and how
reports are processed and rendered.

Your ability to publish and manage reports is determined by the permissions assigned to you.
This chapter assumes that you are a local system administrator on the Report Server, which
allows you to perform all the tasks described here. Specific information regarding how to use
security permissions to limit a user’s actions on the Report Server is covered in Chapter 10,
“Managing Security.”

Publishing Reports
When you publish a report, Reporting Services stores the report definition in a SQL Server
database named ReportServer (as introduced in Chapter 2, “Installing Reporting Services”).
You can also publish other items, such as images referenced by reports or other file types that
need to be accessed by the reporting community. If you’re a report author, you will generally
use Microsoft Visual Studio to publish reports. If you’re a report administrator, you can use
either Report Manager or a small utility named Rs.exe to move previously created reports to
the ReportServer database. You can even use a custom application for publishing reports by
using the Reporting Services Web Services application programming interface (API), which is
covered in greater detail in Chapter 17, “Programming Report Server Management.”

As a report author, you can use standard deployment procedures in Visual Studio to publish
content to the Report Server. Before you start, you must define deployment properties for each
project that contains objects to be deployed. Then, you choose what you want to deploy and
launch the process.

6-2250-7.book Page 233 Tuesday, March 21, 2006 3:45 PM

234 Part III: Managing the Report Server

If you’re a report administrator and not a report author, you might not have access to Visual
Studio to deploy reports to the Report Server. One option you can use is to upload files indi-
vidually to the Report Server using the Report Manager application. You can upload reports,
data sources, and other resources that need to be available to the reporting community.

Another option for publishing reports is the rs utility (Rs.exe), which is a command-line utility
you can use to run scripts that manage the Report Server. The rs utility uses a script file to
execute commands on the Report Server. You’ll learn more about other ways to use this util-
ity in Chapter 17. A script to publish reports to the server comes as a sample with Reporting
Services. To publish reports with this utility, you need to have a script that provides the
details regarding the reports to be published. Then, you execute the rs utility, passing any
arguments used to modify the behavior of the script at run time.

Defining Deployment Properties by Project

You cannot deploy content until you update a project’s deployment properties with a target
Report Server for each project that has content to be deployed. The TargetServerURL property
must contain a valid URL, which is not validated until you try to deploy. When you use the
Report Wizard to create a report, you must supply a URL for the Report Server before you can
complete the wizard, but when you start authoring with a blank report, you must add a value
to the TargetServerURL property of the report’s project.

You should also review the other project deployment properties to ensure you get the
results that you want when content deploys. By default, the target folder, which is defined
by the TargetReportFolder property, will be the same as the project name. This folder will be
created, if it does not exist, as a path on the root node of the Report Server, which is the
Home page you view using Report Manager. For example, for the My Adventure Works
project, a corresponding default folder will be added to the Home page of the Report Manager.
You can also create nested folders by adding a relative path folder structure, such as Adventure
Works/My Adventure Works, to create a folder called My Adventure Works that is contained
within the Adventure Works folder on the Home page.

Another project deployment property is OverwriteDataSources. This controls whether shared
data sources in the project will be published to the server if the data souce file already exists.
The default value of False causes a shared data source to be written to the server only if the
data source doesn’t already exist. The OverwriteDataSources property is discussed in the con-
text of managing data sources later in this chapter. Data sources can be maintained in a sepa-
rate folder from reports, which by default is specified by the TargetDataSourceFolder property
with a value of Data Sources.

In this procedure, you’ll set the deployment properties for the My Adventure Works project.

6-2250-7.book Page 234 Tuesday, March 21, 2006 3:45 PM

Chapter 9: Managing Content 235

Set project deployment properties

1. Start SQL Server Business Intelligence Development Studio and open the solution My
Adventure Works that you saved in the C:\Documents and Settings\<username>\My
Documents\Microsoft Press\rs2005sbs\Workspace\My Adventure Works folder.

Note If you skipped Chapter 7, “Building Advanced Reports,” open the solution My
Adventure Works in the C:\Documents and Settings\<username>\My Documents
\Microsoft Press\rs2005sbs\Answers\chap07\My Adventure Works folder.

2. In Solution Explorer, right-click the My Adventure Works project, and then click Properties.

3. In the My Adventure Works Property Pages dialog box, type http://localhost
/ReportServer as the TargetServerURL so the dialog box looks like this:

Important You must supply a valid URL for the TargetServerURL before a report can
deploy because no default URL is supplied automatically for you. If you have multiple
projects contained in a single solution, you must enter this URL in each project’s proper-
ties individually. The URL must be the virtual directory of the Report Server, which is
http://localhost/ReportServer if you used the default installation of Reporting Services on
your computer.

6-2250-7.book Page 235 Tuesday, March 21, 2006 3:45 PM

236 Part III: Managing the Report Server

Deploying Reports

You can choose to deploy a single object, such as a report or a shared data source, in a project.
You can also decide to deploy an entire project or just some objects in a particular project.

In this procedure, you’ll deploy the My Adventure Works project.

Deploy a solution

1. On the Build menu, click Deploy My Adventure Works. Alternatively, you can right-click
the project in Solution Explorer, and then click Deploy.

Tip For a situation in which you’ve already deployed a project to which you later add
a report, you can deploy the report individually without deploying the entire solution
again. Just right-click the report in Solution Explorer, and then click Deploy. You can also
use this procedure to deploy a data source.

2. Review the results of the deployment in the Output window, which should look like this:

If the deployment fails, you need to review all errors given in the Error List window and
take the appropriate action to resolve the problems.

3. To confirm the successful deployment of your solution, start Report Manager by navigat-
ing to http://localhost/Reports in Internet Explorer.

6-2250-7.book Page 236 Tuesday, March 21, 2006 3:45 PM

Chapter 9: Managing Content 237

The Home page of the Report Manager looks like this:

The My Adventure Works folder corresponds to the single project in the solution you
just deployed. If you have deployed other projects, you’ll see additional folders on this
page. For example, if you completed Chapter 3, “Building Your First Report,” you will
see the Adventure Works folder and the Data Sources folder.

4. Click the My Adventure Works folder link to see its contents in the list view, which looks
like this:

6-2250-7.book Page 237 Tuesday, March 21, 2006 3:45 PM

238 Part III: Managing the Report Server

Report Manager queries the ReportServer database to retrieve a list of the resources,
such as reports and shared data sources, that are associated with the current folder, My
Adventure Works. Notice that the list view displays the folder contents as two columns,
with items in alphabetical order.

5. Click the Product Sales and Profitability report link to view the report, which looks
like this:

Report Manager passes the request for the report to the Report Server, which, in turn,
manages the processes that produce a report you can now view in your browser.

Republishing Reports
Sometimes a report needs to be modified, perhaps as a result of issues discovered dur-
ing testing or because of the development of new business requirements. After making
changes to the report, you can redeploy the modified report to the Report Server. When
you redeploy a report, the original report definition stored in the ReportServer database
is replaced with the new report definition.

Report properties (such as execution, parameters, history, security, and subscription
properties) that you assign by using Report Manager will continue to apply after you
redeploy a report. Redeployment updates only the report definition.

6-2250-7.book Page 238 Tuesday, March 21, 2006 3:45 PM

Chapter 9: Managing Content 239

Uploading Reports

You can use the Upload File feature in Report Manager to navigate to a file on your computer
or on a network file share that you want to upload to the Report Server. Like deploying reports
with Visual Studio, the upload process actually stores the file in the ReportServer database.
You can upload only one file at a time using this method.

In this procedure, you’ll upload the definition of Product Sales YTD using Report Manager.

Upload a report file to the My Adventure Works folder

1. In Report Manager, click the My Adventure Works link in the top-left corner of the
browser window.

2. Click Upload File on the Report Manager toolbar, and then click Browse to navigate to
the C:\Documents and Settings\<username>\My Documents\Microsoft Press
\rs2005sbs\chap09\ folder and open the file Product Sales YTD.rdl.

Your screen looks like this:

If you prefer, you can type the path and filename in the File To Upload box and the name
in the Name box.

If the file already exists in the current folder, an error message will be displayed when
you click OK, unless you select the Overwrite Item If It Exists check box. If this check
box is already selected, the overwrite of the file is performed without any warning.

3. Click OK.

Report Manager uploads the file and places it in the ReportServer database. The name of
the report now displays in the Contents page of the My Adventure Works folder.

6-2250-7.book Page 239 Tuesday, March 21, 2006 3:45 PM

240 Part III: Managing the Report Server

4. Click the Product Sales YTD report link to open the report, which looks like this:

You should always test an uploaded report in Report Manager to confirm that the
Report Server can connect properly to the data source, execute the report’s query, and
render the report.

Uploading Resources
You can also use Report Manager to upload additional items, known as resources, to
the Report Server for storage in the ReportServer database. Resources are items such as
images—for example, JPEG files—that might be referenced as a link in a report. How-
ever, you can also add resources that are not used in a report, such as Microsoft Word
or Microsoft Excel files, or even text files. If a user opens a resource, Reporting Services
does not process the resource, but instead downloads the resource for saving or for
viewing, if the client computer has the requisite application. After a resource is up-
loaded, it can be moved to another folder just like a report. You’ll learn more about
moving reports and resources later in this chapter.

Creating a Script File

The rs utility requires an input file with an .rss file extension that is written in Microsoft Visual
Basic .NET or Microsoft Visual C# .NET. Reporting Services ships with a sample Visual Basic
.NET script file, PublishSampleReports.rss (located in the C:\Program Files\Microsoft SQL
Server\90\Samples\Reporting Services\Script Samples folder, but you must first install the
Microsoft SQL Server 2005 Samples from the Sample program group, which is located in the

6-2250-7.book Page 240 Tuesday, March 21, 2006 3:45 PM

Chapter 9: Managing Content 241

Documentation and Tutorials program group of Microsoft SQL Server 2005), which you can
adapt to your needs. The script file used in the following procedure is a simplified version of
the official sample script.

Using the rs Utility

When you want to use the rs utility to publish reports, you need to provide at least two argu-
ments, the name of the script file and the URL for the Report Server, using this syntax: rs –i
inputfile –s ReportServerURL. The current Windows credentials are used for authentica-
tion to the Report Server, unless you use arguments to pass a user name and password. To
view a description of all available arguments, use the following syntax: rs -?. You’ll learn
more about the rs utility in Chapter 17.

In this procedure, you’ll execute the rs utility using the publishReports.rss script file as an
input file.

Execute the rs utility

1. On the Start menu, click Run, type cmd, and then click OK to open a Command Prompt
window.

2. Type cd C:\Documents and Settings\<username>\My Documents\Microsoft Press
\rs2005sbs\chap09 at the command prompt to navigate to the folder that contains the
script file.

3. Type rs -? and press Enter to view the online help for this utility.

4. Run the rs utility by typing the following: rs –i PublishReports.rss –s http://localhost
/ReportServer. Then press Enter.

Your screen now looks like this:

5. To confirm that the reports were successfully published, open the Home page of Report
Manager in Internet Explorer. If the Home page is already open, click Refresh on the
Internet Explorer toolbar to update the page.

6-2250-7.book Page 241 Tuesday, March 21, 2006 3:45 PM

242 Part III: Managing the Report Server

6. Click the Adventure Works Samples folder link.

There should be three reports in this folder: Actual Vs Quota, Employee Product Sales,
and Product Catalog.

7. Click each report link to confirm the reports execute successfully.

Organizing Content
You are not limited to using the folders created as part of the publishing process. In addition,
you can add more folders to create a hierarchical organization, much like the hierarchy you
use in a file system on your computer. You can move reports and resources from their original
folder to a new folder quite easily. As part of the content management process, you can also
create linked reports to create custom versions of a report without physically reproducing the
report definition.

Report Manager offers several features to help you organize and manage content on the
Report Server. You can add, move, or delete folders to manage a logical grouping of items on
the server. Once you’ve structured folders to your liking, you can move reports, resources, and
shared data sources to folders other than the ones to which they were originally published.
You can create linked reports to generate alternate versions of a report so you can use different
parameter values or security settings for different groups of users. Finally, you can use folder
properties and report general properties to modify names and descriptions to help users
locate information more easily.

Working with Folders

Folders are an important tool for organizing reports and resources on the server. In addition,
folders are used to apply security to groups of items, which you’ll learn about in Chapter 10.
The folders you create and access in Report Manager do not physically exist as folders in a file
system, but are recognized by the Report Server as containers to logically organize content on
the server.

To create a folder, you must navigate to the folder that will become the parent folder or navi-
gate to the Home page if the folder will not be nested. You can move a folder after it has been
created to nest it within another folder. If you want to rename a folder, add a description, or
hide the folder name from the list view in Report Manager, you can make the necessary
changes on the folder’s Properties page. If you delete a folder, all of its contents will also be
deleted, so be careful to check the contents of a folder beforehand.

Some folders are reserved and cannot be moved, renamed, or deleted. These reserved folders
are Home, My Reports, and Users. The latter two folders exist only if you enable My Reports
on the Report Server, which is discussed later in this chapter.

In this procedure, you’ll add a folder to contain shared data sources.

6-2250-7.book Page 242 Tuesday, March 21, 2006 3:45 PM

Chapter 9: Managing Content 243

Add a folder

1. In Report Manager, click the Home link, and then click New Folder on the Report Man-
ager toolbar.

2. Replace the default name with Adventure Works Data Sources so your screen looks
like this:

Notice the option to hide the folder from the list view.

3. Click OK.

The Home page of Report Manager now includes another folder, Adventure Works Data
Sources. You’re ready to move content into the new folder.

Using My Reports
My Reports is an optional feature of Report Manager and is disabled by default. It pro-
vides a personal workspace for each user to use for such things as private, personalized
reports or perhaps reports that are being tested before deployment to the user commu-
nity. Users cannot share the content of their folders with other users within the Report
Manager interface. (However, a user can export a report to another file format and share
the exported content through e-mail or placement on a network file share.)

To enable My Reports, click the Site Settings link, and then select the Enable My
Reports… check box. You can use roles to modify what a user can do with My Reports.
You’ll learn all about roles in Chapter 10.

6-2250-7.book Page 243 Tuesday, March 21, 2006 3:45 PM

244 Part III: Managing the Report Server

Moving Content

As a report administrator, you can move reports, linked reports, resources, folders, and shared
data sources from one folder to another. If you move a report, all its properties will remain the
same in its new location and its history will follow the report if it exists. Similarly, when you
move a shared data source, its relationship to reports and subscriptions is maintained.

Reorganizing files and folders is particularly useful with data sources. You might refer to the
same logical data source from several different projects. On the server, you can put one copy
of the data source into a special folder and point to that one data source from all the reports
and folders.

In this procedure, you’ll move shared data sources from the Data Sources folder to the Adven-
ture Works Data Sources folder.

Move shared data sources

1. On the Report Manager Home page, click the Data Sources folder link.

2. Click Show Details on the Report Manager toolbar to see the details view, which looks
like this:

Report Manager now displays the contents of the folder as a single list with check boxes
to the left of each item and the item details, such as modification date and author. Notice
that the Move button is currently unavailable. You must first select one or more items in
the folder to enable this button.

3. To select all data sources in this folder, select the check boxes for rs2005sbs and
rs2005sbsDW, and then click Move on the Report Manager toolbar.

6-2250-7.book Page 244 Tuesday, March 21, 2006 3:45 PM

Chapter 9: Managing Content 245

The folder hierarchy of the Report Server displays in the Move Multiple Items page. You
can navigate this hierarchy to locate a target folder for the items selected from the previ-
ous page. Alternatively, you can enter the folder’s path in the Location box.

4. Click the Adventure Works Data Sources folder, as shown here, and then click OK:

5. Click the Home link, and then click the Adventure Works Data Sources folder link to
confirm that the data sources have been moved, as shown here:

6-2250-7.book Page 245 Tuesday, March 21, 2006 3:45 PM

246 Part III: Managing the Report Server

6. Click the rs2005sbsDW data source link, and then click the Dependent Items tab to see
the list of associated reports, which looks like this:

The reports that were associated with this data source during the authoring stage will
continue to use the data source, even though it’s been relocated to another folder.

Note When you upload a shared data source to the server and then move that data source
to a new folder, Visual Studio considers the data source as nonexistent and uploads a new copy
to the server during deployment, even if OverwriteDataSources is set to False. The data source
is not used (because the report now points to the data source in the new folder), but it might
be confusing to users. The simplest solution is to hide the new copy of the data source by using
item-level security, which you’ll learn about in Chapter 10. The other alternative is to delete the
unused data source following each deployment using Visual Studio.

Linking Reports

Creating a linked report is an easy way to customize report output for users. You can use one
report as a base from which to create many representations of report data without physically
duplicating reports. A linked report uses the same report definition and data source property
as its base report, but can have its own execution, parameter, subscription, and security prop-
erties. For example, you can create a linked report that uses the Product Sales and Profitability
Parameter report as a base, and then assign a different default value for the Category report
parameter. If you place the linked report in a separate folder, you can limit access to the report
to those users who need to see data related to a particular category. Be careful with linked
reports, however. If you delete the base report, any reports linked to it won’t work anymore!

In this procedure, you’ll create a linked report and store it in a new folder.

6-2250-7.book Page 246 Tuesday, March 21, 2006 3:45 PM

Chapter 9: Managing Content 247

Add a linked report

1. Click the Home link in the Report Manager, and then click New Folder on the Report
Manager toolbar.

2. Replace the default name with Adventure Works Bikes, and then click OK.

3. Click the My Adventure Works folder link, click the Product Sales and Profitability
Parameters report link, and then click the Properties tab.

You don’t need to wait for the report to display before you click the tabbed pages of this
report.

4. Click Create Linked Report.

5. Enter a name for the linked report: Bike Sales and Profitability.

If you click OK now, the linked report will be added to the current folder, My Adventure
Works. However, linked reports are often placed in separate folders to take advantage of
the ability to manage permissions by folder.

6. Click Change Location, click Adventure Works Bikes in the folder hierarchy, and then
click OK so your screen now looks like this:

7. Click OK.

The linked report now displays in the browser window. This linked report is not a phys-
ical copy of the base report, but rather a version rendered online that uses the same
report definition and data source as the base report. You’ll need to change the report’s
properties to display only the Bike category, which you’ll learn how to do later in this
chapter.

6-2250-7.book Page 247 Tuesday, March 21, 2006 3:45 PM

248 Part III: Managing the Report Server

Working with General Properties

In addition to creating a linked report, you can use the General Properties page of a report to
change its name or description. When you create a name, you cannot use special characters,
but you have more flexibility in the report’s description. Only users who have access to a
report can view its description. You can also use the General Properties page of a report to
move a report from one folder to another on the Report Server or to delete the report from the
server. If you delete a report, any linked reports will be broken and all history, report-specific
schedules, and subscriptions associated with the report will also be deleted.

The General Properties page of a report also allows you to access and update the report defi-
nition. The Edit link only allows you to extract the report definition for read-only purposes.
Any edits you make to the extracted file do not change the report definition used by the
Report Server. However, you can save the file to a network share, and then use the Update link
to replace the server’s report definition.

In this procedure, you’ll add a description to the Bike Sales and Profitability report.

Change general properties

1. With the Bike Sales and Profitability report still open in Internet Explorer, click the
Properties tab to view the report’s general properties, which look like this:

Notice that you can change the name of the report on this screen as well as add a
description. This page also includes options that allow you to modify this report. They
are as follows:

6-2250-7.book Page 248 Tuesday, March 21, 2006 3:45 PM

Chapter 9: Managing Content 249

■ Change Link allows you to associate the current report with a different report def-
inition. You might need to do this if the original base report changes or is deleted.
Only the report definition for the linked report changes; the linked report’s prop-
erties remain unchanged.

■ Delete allows you to delete the linked report from the current folder and any sub-
scriptions, schedules, or history associated with the linked report. Deleting the
linked report does not have an impact on the base report.

■ Move allows you to move the linked report from the current folder to another loca-
tion in the Report Server’s folder hierarchy.

2. Type the following description: Bike sales amount, order quantity, margin amount,
and margin percentage by month and year. Margin percentage exceptions at 15% or
below, customizable.

Tip A description should provide users with enough information to let them know
what kind of data the report includes as well as apprise them of any unique interactivity
features.

3. Click Apply.

4. Click the Adventure Works Bikes link at the top of the browser window to view the
report description.

5. Click Hide Details on the Report Manager toolbar so your screen looks like this:

6-2250-7.book Page 249 Tuesday, March 21, 2006 3:45 PM

250 Part III: Managing the Report Server

Using Properties to Manage Report Content
In addition to accessing a report’s general properties as part of the management of the Report
Server’s content, you can use Report Manager to manage report properties that affect the con-
tent of reports. A data source is needed to connect to the database that is hosting the source
data required for the report and to authenticate the connection so the report’s query will exe-
cute. If the connection or authentication fails, data cannot be displayed in the report. You can
override the data source associated with the report when the report was published by chang-
ing its data source properties.

Report content can also be affected by changing parameter values. You can override a default
parameter value provided in the report definition with a new value using parameter proper-
ties. Although you can still permit the user to select a different value, you can also hide the
parameter altogether to prevent a change.

Working with Data Sources

Often, you want to manage a report’s data source on the Report Server independently of the
data source in Visual Studio. For example, while developing a report, you might use a small
sample database as the data source, but once the report is on the server, you want it to access
the full production database. Likewise, in development, you might want to use integrated
security for the data source, but in production, store the user name and password in the
report. You can use Report Manager to update the data source and overwrite the report’s data
source properties that are stored in the ReportServer database. The OverwriteDataSources
property for the project in Visual Studio controls whether redeploying a report will overwrite
changes you make on the Report Server. By leaving OverwriteDataSources with the default
value of False, you keep the development and production data sources decoupled, which is
convenient in most situations.

Selecting a shared data source or creating a custom data source, which requires a data process-
ing extension and a connection string, are pretty straightforward processes. However, you
need to give some careful thought to the way that credentials are used to connect to the data
source. Most of the time, storing the credentials securely with the report in the database is
best. These are not the credentials used to access the report, but the credentials used by the
report to access the source data. You most likely don’t want to give report users even read
access to the source database. In rare cases, you might want to use prompted credentials or
Windows credentials, but these can be used only when the user accesses reports in real time.
If your database does not require credentials to read the data, you can create a data source
using no credentials, but this is an uncommon scenario, since it’s good practice to require cre-
dentials on all databases.

6-2250-7.book Page 250 Tuesday, March 21, 2006 3:45 PM

Chapter 9: Managing Content 251

If reports will be executed as an unattended process, such as for scheduled snapshots and
subscriptions, you must use stored credentials, because the Report Server executes a scheduled
report without a user context. Stored credentials are stored in reversible encryption in the
ReportServer database and are not stored in the report definition. The same credentials will be
used each time the report is processed for all users of a report that is configured to use stored
credentials.

In this procedure, you’ll modify the shared data source rs2005sbs to prompt the user for
credentials.

Configure credentials supplied by the user

1. In Report Manager, click the Home link, click the Adventure Works Data Sources folder
link, and then click the rs2005sbs shared data source link.

2. Below Connect Using, select the Credentials Supplied By The User Running The Report
option so your screen looks like this:

If the database to which the data source connects uses Windows authentication, you
can select Use As Windows Credentials When Connecting To The Data Source, but for
this example, you should skip this option.

6-2250-7.book Page 251 Tuesday, March 21, 2006 3:45 PM

252 Part III: Managing the Report Server

Important You should prompt the user for credentials or use integrated security only
when users will be accessing a report in real time. These types of authentication require
a user to be physically connected (and possibly to have responded to the authentication
prompt) before the report’s query can execute.

3. Click Apply at the bottom of the page.

You’ll test this data source later in this chapter when you execute a report on demand.

In this procedure, you’ll create a custom data source that uses stored credentials for the Prod-
uct Sales and Profitability Parameters report.

Configure stored credentials

1. In Report Manager, click the Home link, click the My Adventure Works folder link, and
then click the Product Sales and Profitability Parameters report link.

2. Click the Properties tab, and then click the Data Sources link in the left frame of the
page.

3. Select A Custom Data Source.

4. Enter a connection string: data source=localhost;initial catalog = rs2005sbsDW.

Note Unlike the Report Designer, the Report Manager does not provide a dialog box
to help you build a connection string. You will have to enter the connection string man-
ually or copy it from another source.

5. Below Connect Using, select Credentials Stored Securely In The Report Server, and then
enter ReportExecution as the user name and ReportExecution as the password.

Note The ReportExecution user is a special account created as a generic SQL Server
account with read access to the rs2005sbs and rs2005sbsDW databases. This user was
created with a script that executed during installation of the sample files for this book.
When you set up stored credentials for your production environment, you can use either
a Windows logon or a database-specific logon for stored credentials.

6-2250-7.book Page 252 Tuesday, March 21, 2006 3:45 PM

Chapter 9: Managing Content 253

The data source section of the screen should look like this:

6. Click Apply.

The Product Sales and Profitability Parameters report now uses a custom data source
and is no longer associated with the rs2005sbsDW shared data source. The shared data
source continues to use the user’s Windows authentication, while the custom data
source uses a special SQL Server login account for authentication. This means that a pre-
view of the report in Visual Studio will use a different data source from the production
report (which might simply be different credentials, but could also be a different data-
base). You may or may not want that difference.

Tip If you have many reports that need to use a special account, you should instead
set up a shared data source rather than a custom data source so you have one place to
manage the data source. It’s okay to have several different data source definitions that
connect to the same database, but use different authentication methods.

The linked report, Bike Sales and Profitability, is also affected by the change to the data
source. The data source property is the only property of the base report that cannot be
managed separately in the linked report.

Specifying a Default Value

If a report parameter has been defined with a default value in the authoring stage, you can
override this value by using Report Manager to update the report’s parameter properties. This
is a useful technique, in combination with linked reports, to generate separate reports by

6-2250-7.book Page 253 Tuesday, March 21, 2006 3:45 PM

254 Part III: Managing the Report Server

parameter value. For example, if product categories are managed by different departments,
you can create a folder for each department, and then create a linked report that has the
default parameter value changed to reflect the applicable category for the folder in which it’s
placed.

You can also disable a default value that has been provided in the report definition. When you
disable the default value, the report will not execute until the user supplies a value for the
report parameter.

In this procedure, you’ll set the default value for the Category report parameter to 2, which is
the key value for the Bike category.

Change a parameter’s default value

1. In Report Manager, click the Home link, click the Adventure Works Bikes folder link,
and then click the Bike Sales and Profitability report link.

2. Click the Properties tab, and then click the Parameters link in the left frame of the page.

3. Change the default value for Category from 4 to 2 so your screen looks like this:

The value 2 is the CategoryKey value that corresponds to Bike.

4. Click Apply.

5. Click the View tab.

The report executes using the Bike category as a default. Notice that you can still select
a different category. If you don’t want the user to view another category, you must
remove the prompt.

6-2250-7.book Page 254 Tuesday, March 21, 2006 3:45 PM

Chapter 9: Managing Content 255

Disabling a Parameter Prompt

When you don’t want a user to be able to change a report parameter value, you can remove the
prompt so that a new value cannot be entered or selected from the list of available values. If
you decide to use separate folders for linked reports using different parameter values, you can
use this technique to prevent users from viewing another category. You can also remove a
prompt from reports that run unattended, as long as you make sure the report has a default
value for the parameter; otherwise, the report will never execute.

In this procedure, you’ll disable the prompt for the Category report parameter.

Hide a parameter prompt

1. Click the Properties tab for the Bike Sales and Profitability report, and then, if necessary,
click the Parameters link.

2. Clear the Prompt User check box for the Category parameter.

Important Don’t disable the prompt without providing a default value. Otherwise,
the report can’t execute and the user has no way to provide a value for the report
parameter. The result is an empty report.

3. Click Apply.

4. Click the View tab to confirm the Category prompt was removed, as shown in this
report:

6-2250-7.book Page 255 Tuesday, March 21, 2006 3:45 PM

256 Part III: Managing the Report Server

Notice that the Category prompt is no longer displayed. The textbox in the upper-right
corner of the report properly indicates that the report is filtered by the Bike category and
the table contains only data for the Bike category.

Managing Report Execution
Report execution is the process of turning a published report into a rendered report. More
specifically, Reporting Services retrieves the data defined by the query in the dataset, and then
combines the report’s layout definition with the resulting data to produce an intermediate ver-
sion of the report. Reporting Services then uses a rendering extension with this intermediate
report to produce the report in its final format, which is, in turn, delivered to users. You can
optimize report execution by controlling whether the processing steps occur when the user is
accessing a report online or before the user opens the report.

When deciding how to manage report execution, you’ll need to balance the users’ needs for
timely data and fast response with the Report Server’s ability to process reports. If the user
needs access to real-time data or data that is relatively recent and the report query can execute
and return results in a reasonable amount of time, you can consider the On Demand execu-
tion options. When using On Demand execution, you need to decide whether to cache a
report. If users need access to historical data or a report takes a long time to process, consider
using Scheduled execution options to maintain a snapshot or to build a history of reports on
a manual or scheduled basis. The On Demand and Scheduled execution options are com-
pared in the following table. The remainder of this chapter reviews each option in detail.

You can use the default execution properties for reports that query frequently changing
source data or when there is no particular advantage to having a report ready in advance of
browsing. If the data in a frequently accessed report needs to be relatively fresh but does not
have to be as current as the data source, you can configure the report’s execution properties to
use a cached instance.

On Demand Scheduled

Non-Cached Cached Instance Snapshot Report History

Stored
Credentials

No Yes Yes Yes

Storage Each time report
is opened

First time report is
opened

In advance In advance

Limits
(per report)

None One per combination
of parameter values

One Multiple

Persistence Temporary Expires Is replaced Configure as either
limited or unlimited
number; specific
history deletion

6-2250-7.book Page 256 Tuesday, March 21, 2006 3:45 PM

Chapter 9: Managing Content 257

Executing Reports with Current Data

When a report is configured to use the default execution properties, Reporting Services pro-
cesses a report on demand each time a user requests the same report, which results in a new
query for each request. The overhead of all these queries might have negative performance
consequences on the source database as well as the Report Server, so you must weigh this
against the benefits of providing users with access to the up-to-date data.

To improve the experience of report viewing and navigation with Report Manager, Reporting
Services uses session management. A session begins when a user opens a report for viewing in
a browser or client application. After the intermediate format of the report is created, a copy is
placed in the session cache, which is maintained in the SQL Server database ReportServer-
TempDB. The session ends when the user closes the browser or client application. If a report’s
definition changes while a user is viewing it in an active session, the user will not see the
updated version of the report until the user manually refreshes the report, which retrieves the
current version from the ReportServer database.

In this procedure, you’ll execute a report on demand and respond to prompted credentials.

Execute a report on demand with prompted credentials

1. In Report Manager, click the Home link, click the My Adventure Works folder link, and
then click the Order Details report link to see this report:

The Reseller report parameter in this report is dependent on a query that uses the
rs2005sbs data source that you converted to prompted credentials earlier in this chap-
ter. Even though a default value has been defined for this report parameter, the query

6-2250-7.book Page 257 Tuesday, March 21, 2006 3:45 PM

258 Part III: Managing the Report Server

must execute to build the list of available values for Reseller. Accordingly, the user must
enter a login name and a password.

2. Enter ReportExecution as the login name and ReportExecution as the password.

3. Click View Report to confirm that the top of your screen looks like this:

The query for the Reseller report parameter executes, and because the report parameter
includes a default value, the report query also executes. Now the report is visible and
you can change any report parameter value to update the report. The credentials are
retained in the report for use in the next query, which is triggered when you click View
Report.

Note Technically, the report is not executed on demand each time you view it. The
report is stored in the session (in ReportServerTempDB) and subsequent refreshes of the
page in the same session retrieve the same report. In effect, the session is a private cache
of the report. To force the report to retrieve new data, you must click Refresh on the
Report Manager toolbar.

6-2250-7.book Page 258 Tuesday, March 21, 2006 3:45 PM

Chapter 9: Managing Content 259

Implementing Cached Instances

A cached instance of a report is like a session report, except that the same intermediate report
can be shared between multiple users. Using a cached instance of a report reduces the num-
ber of queries to the source database and potentially improves the performance of report exe-
cution. In this case, Reporting Services starts the process with the intermediate format of the
report, which is stored temporarily in the ReportServerTempDB database. This intermediate
report is flagged as a cached instance and is used for rendering in response to subsequent
requests for the same report until the cached instance expires.

If a report uses query parameters, the query parameters are applied when the cached instance
is created. This means that if the user selects a different parameter value that changes the
value of a query parameter, a new cached instance is placed in the ReportServerTempDB data-
base, but only if a cached instance with that parameter value doesn’t already exist. Conse-
quently, it’s possible to have a cached instance for every combination of parameter values in a
report.

Whereas a change in a query parameter triggers a new cached instance, a filter based on a
report parameter value is applied each time to the existing cached instance. In this case, each
change in a filter value renders the report again without the advantage of storing the results as
a cached instance.

When you change a report’s execution properties to use a cached instance, you limit the
amount of time that it persists in the ReportServerTempDB database by establishing an expi-
ration rule for caching. You can expire a cached instance at regular intervals or according to a
report-specific schedule or shared schedule. Regardless of how you choose to expire a cached
instance, the report must use a data source that draws on stored credentials.

In this procedure, you’ll configure a report as a cached instance that expires on a report-
specific schedule.

Configure a cached instance

1. In Report Manager, click the Home link, click the Adventure Works Bikes folder link,
and then click the Bike Sales and Profitability report link.

2. Click the Properties tab, and then click the Execution link.

6-2250-7.book Page 259 Tuesday, March 21, 2006 3:45 PM

260 Part III: Managing the Report Server

3. Click the third rendering option, Cache A Temporary Copy Of The Report. Expire Copy
Of Report On The Following Schedule, so your screen looks like this:

4. With Report-Specific Schedule selected, click Configure.

Tip If you want the cache instance of several reports to expire at the same time,
consider using a shared schedule.

5. Keep the default values, which indicate a schedule that executes on every day of the
week.

6-2250-7.book Page 260 Tuesday, March 21, 2006 3:45 PM

Chapter 9: Managing Content 261

6. For the Start Time, enter 11, and then click P.M., so your screen now looks like this:

Notice at the bottom of the screen that you can optionally specify a start date or an end
date for the schedule, or both.

7. Click OK, and then click Apply to complete the configuration.

8. Click the View tab to browse the report.

A cached instance of the report was just created and will expire at 11 P.M. this evening.
If another user opens this report, Reporting Services does not execute the report query,
but instead retrieves the cached instance from the ReportServerTempDB and renders
the report for viewing.

Working with Shared Schedules

Before you can begin scheduling reports, you must define a schedule. Then, you can use the
schedule to create a snapshot of a report that can be accessed later by users, or to build a his-
tory of a report to capture information at fixed intervals of time. Although you can define a
unique schedule for each report, a more efficient approach is to create a shared schedule that
can trigger several activities according to the same time intervals. You can use a shared sched-
ule to manage snapshot creation, cache expiration, and subscription delivery for multiple
reports.

In this procedure, you’ll create a shared schedule to execute tasks on the first day of every
month.

6-2250-7.book Page 261 Tuesday, March 21, 2006 3:45 PM

262 Part III: Managing the Report Server

Create a shared schedule

1. In Report Manager, click the Site Settings link.

2. Scroll to the bottom of the page to find the section titled Other, and then click the Man-
aged Shared Schedules link.

3. Click New Schedule on the Report Manager toolbar.

The Scheduling page is nearly identical to the page you used to create a report-specific
schedule earlier in this chapter.

4. In the Schedule Name box, type Beginning of Month.

5. Below Schedule Details, select Month.

6. Below Monthly Schedule, select On Calendar Days, and then replace the default value
with 1 to execute this schedule on the first day of the month.

7. In the Start Time hours box, type 05 so your screen now looks like this:

6-2250-7.book Page 262 Tuesday, March 21, 2006 3:45 PM

Chapter 9: Managing Content 263

8. Click OK to see the schedule display on the Shared Schedules page, as shown here:

Important In order to add a Shared Schedule, SQL Server Agent must be running.
Otherwise, you will receive an error when you click OK to create the shared schedule.

You can select schedules on this page to which you want to apply an action. After you
select one or more schedules by selecting the appropriate check boxes, you can click
Delete to permanently remove a selected schedule, Pause to temporarily disable a
selected schedule, or Resume to enable a selected schedule that had been previously
paused.

Managing Snapshots

If a report is configured to render from a snapshot, Reporting Services performs the data
retrieval and processing before a user opens the report. This can be useful when you need to
capture data in a report as of a particular point in time, such as a financial statement at month-
end, or when queries take a long time to execute, such as year-to-date queries in a large trans-
actional database. You can create a snapshot manually, but typically, a snapshot is created on
a scheduled basis to update a report with more current data. Either way, Reporting Services
uses the query results and the report layout to create an intermediate report that is stored as
a snapshot in the ReportServer database. When a user requests the report, Reporting Services
retrieves the intermediate report for rendering and delivery to the user.

6-2250-7.book Page 263 Tuesday, March 21, 2006 3:45 PM

264 Part III: Managing the Report Server

As with a cached instance, query parameters are applied when the snapshot is created. A snap-
shot is not an interactive report, so parameter values cannot be changed once the snapshot
has been created. However, report parameter values used as filters are applied against the
snapshot during browsing, which can be an alternative approach to filtering data with query
parameters.

You can create a snapshot manually or on a regular basis by using either a report-specific
schedule or a shared schedule. However, only one snapshot at a time can exist. Each subse-
quent snapshot replaces the previous one. To configure a report to execute as a snapshot, you
must select a data source that uses stored credentials for the report.

In this procedure, you’ll use a shared schedule to regularly create a snapshot for the Product
Sales and Profitability Parameters report.

Schedule a snapshot

1. Click the Home link, click the My Adventure Works folder link, click the Product Sales
YTD report, and then click the Properties tab.

2. Click the Data Sources link, and then select the option Credentials Stored Securely In
The Report Server. Use ReportExecution as the user name and ReportExecution as the
password. Then, click Apply.

Note When you plan to schedule snapshots for a report, the report’s data source
must use stored credentials. It doesn’t matter whether you use a shared or custom data
source. You can skip this step when your report is already using a data source with
stored credentials.

3. Click the Execution link.

4. Select Render This Report From A Report Execution Snapshot, select the Use The Fol-
lowing Schedule To Create Report Execution Snapshots check box, and then select
Shared Schedule.

Notice that Beginning Of Month is available in the Shared Schedule drop-down list.
Because it is the only shared schedule, it is automatically selected. The schedule details
appear below the selected schedule.

6-2250-7.book Page 264 Tuesday, March 21, 2006 3:45 PM

Chapter 9: Managing Content 265

5. To prevent a snapshot from being created now, clear the Create A Report Snapshot
When You Click The Apply Button On This Page check box so your screen now looks
like this:

6. Click Apply.

Note If the data source you’re using for the current report is not using stored creden-
tials, you will get the following error message when you click Apply: “Credentials used to
run this report are not stored.” You must change the data source to use stored creden-
tials before you try to assign a snapshot schedule to the report.

6-2250-7.book Page 265 Tuesday, March 21, 2006 3:45 PM

266 Part III: Managing the Report Server

7. Click the View tab to view the error message that is displayed when a snapshot is not yet
ready:

The report will not be available until it executes for the first time, which will be the first
day of the next month.

Using Report History

If you want to save snapshots for future reference, you can enable a report’s history properties.
Then, you can add a snapshot to report history manually or automatically each time a snap-
shot is created. Alternatively, you can use a schedule to update report history with the current
snapshot, which Reporting Services creates if a current snapshot doesn’t already exist.
Because the report is executed as a snapshot, the report must use a data source that draws on
stored credentials.

Although you can keep an unlimited number of snapshots in report history, you might want
to establish a maximum limit to keep the number of accumulated snapshots under control.
You can set a global limit to apply to all reports that use report history, but you can override
this number for any report. You can change the global or report-specific limit any time, but be
careful when decreasing the number of snapshots in history. The oldest snapshots will be
eliminated immediately, and users might not appreciate losing access to these reports without
advanced notice. You can also delete individual snapshots in report history manually, but
there isn’t a utility for deleting report history in bulk apart from deleting the report itself.

In this procedure, you’ll configure report history to store all report snapshots.

6-2250-7.book Page 266 Tuesday, March 21, 2006 3:45 PM

Chapter 9: Managing Content 267

Store snapshots in history

1. Click the Properties tab of the Product Sales YTD report, and then click the History link.

2. Select Store All Report Execution Snapshots In History.

3. Below Select The Number Of Snapshots To Keep, select Limit The Copies Of Report His-
tory, and then type 12 in the box so your screen looks like this:

4. Click Apply, and then click OK to confirm the message that warns you about changing
the report history.

5. Click the Execution link.

6. Select Create A Report Snapshot When You Click The Apply Button On This Page, and
then click Apply.

7. Click the View tab.

You can view the report now that a snapshot is created ahead of schedule. Notice that
you cannot change the report parameter values.

6-2250-7.book Page 267 Tuesday, March 21, 2006 3:45 PM

268 Part III: Managing the Report Server

8. Click the History tab to confirm that your screen looks similar to this:

The snapshot you created manually is now available in the History list and is listed by
date and time of creation. The list will grow as the Beginning of Month shared schedule
executes each month. When the thirteenth snapshot is added to the list, the oldest snap-
shot will be deleted from the list so that only 12 snapshots are in the list, as defined in
the History properties.

Note You can click New Snapshot on the History tab of the current report to add
snapshots to the list manually. This button is enabled only when the report uses a data
source with stored credentials and the option to Allow Report History To Be Created
Manually is enabled on the History Properties page.

Chapter 9 Quick Reference

To Do this

Set project deployment properties In the Solution Explorer window of Visual Studio, right-click the project
name, and then click Properties. At a minimum, enter a TargetServer-
URL. For example: http://localhost/ReportServer.

Set the project context properties
for deployment

In the Properties dialog box for the project, click Configuration Manag-
er and set Build and Deploy to control deployment behavior.

Publish an object using Visual
Studio

In Solution Explorer, right-click the object or objects to deploy. If the
object is a solution, click Deploy Solution. For all other objects, click
Deploy.

6-2250-7.book Page 268 Tuesday, March 21, 2006 3:45 PM

Chapter 9: Managing Content 269

Open Report Manager In Internet Explorer, enter the Report Manager’s URL. For example:
http://localhost/Reports.

Upload resources by using Report
Manager

In Internet Explorer, open Report Manager, click the folder links to nav-
igate to the parent folder for the resource, and then click Upload File
on the Report Manager toolbar. Enter the resource filename, or use the
Browse button to navigate to the resource by using the file system.

Publish reports with the rs utility Prepare a script file that uses the Web Service proxy object rs and the
methods CreateFolder and CreateReport. Then, use this file as an input
argument to the rs utility by using the following syntax:
rs –i inputfile –s ReportServerURL.

Add a folder In Report Manager, navigate to the parent folder, and then click New
Folder on the Report Manager toolbar.

Move a resource In Report Manager, navigate to the resource’s parent folder, and then
click Show Details on the Report Manager toolbar. Select the check box
for the resource, and then click Move on the toolbar.

Link a report In Report Manager, open the base report, and then click the Proper-
ties tab. On the General Properties page, click Create Linked Report
and name the linked report. Click Change Location to select a differ-
ent folder.

Change a report’s name or
description

In Report Manager, open the base report, and then click the Properties
tab. Enter a revised name or description.

Configure credentials for a data
source

In Report Manager, navigate to the shared data source or open a re-
port, click the Properties tab, and then click the Data Sources link. Se-
lect the applicable Connect Using option to apply one of the
following: prompted credentials, stored credentials (which will require
supplying the login name and password), Windows NT credentials, or
no credentials.

Change a report parameter’s
default value or prompt

In Report Manager, open the report, click the Properties tab, and then
click the Parameters link.

Change a report’s execution
properties

In Report Manager, open the report, click the Properties tab, and then
click the Execution link.

Enable report history In Report Manager, open the report, click the Properties tab, and then
click the History link to select a method for adding snapshots to report
history. You can also specify a limit to the number of snapshots kept in
history.

To Do this

6-2250-7.book Page 269 Tuesday, March 21, 2006 3:45 PM

6-2250-7.book Page 270 Tuesday, March 21, 2006 3:45 PM

271

Chapter 10

Managing Security

After completing this chapter, you will be able to:

■ Use item-level role assignments to secure items in groups or individually.

■ Define administrative permissions with system-level role assignments.

■ Combine roles with parameters to secure data in linked reports.

■ Use a permissions table to restrict access to data in reports.

After publishing content on the Report Server, which you learned how to do in Chapter 9,
“Managing Content,” it’s important to implement security. At a minimum, you need to grant
users access to the Report Server and its contents. In this chapter, you’ll learn how to use role-
based security to control not only what users can see on the Report Server, but also what they
can do. You’ll also learn three different techniques to restrict data within a report based on the
user currently accessing the report. This chapter assumes that you’re a local system adminis-
trator on the Report Server so you have appropriate permissions to perform all the tasks
described here.

Using Report Server Security
Reporting Services uses role-based security to allow individual users or groups of users to per-
form specific activities. In a role-based security system, roles are used to establish groups of activ-
ities based on the functional needs of users. For example, some Reporting Services users only
need to view reports, so all activities that relate to viewing items on the Report Server are orga-
nized into a predefined role. Similarly, other users need to be able to publish reports, so activities
related to viewing, publishing, and managing reports are organized into another predefined role.

Reporting Services has 16 predefined user activities, or tasks, and nine predefined system
tasks. These tasks include everything that a user or administrator can do in Reporting
Services. You cannot create or delete tasks. A specific list of tasks that can be associated
with a role is known as a role definition. Reporting Services provides five item role defini-
tions and two system role definitions. You can use the role definitions as provided, modify
them, or create your own.

An item role assignment associates a Microsoft Windows user or group, an item role, and a sin-
gle item, such as a report or a folder. Item role assignments are used to apply security at the
item level to manage what users can do with each item. A system role assignment associates a
Windows user or group with a system role. System role assignments determine who can per-
form certain administrative tasks on the Report Server, such as managing schedules.

6-2250-7.book Page 271 Tuesday, March 21, 2006 3:45 PM

272 Part III: Managing the Report Server

You implement security on the Report Server and its contents by using Report Manager or by
using Microsoft SQL Server Management Studio. You might need to edit the existing roles or
add your own roles to organize tasks into functional groupings that are appropriate for your
environment. To grant access to the Report Server to other users, you must assign each user,
either individually or as part of a group, to an existing role for the items on the Report Server
with which they can interact. You might also want to create system role assignments for other
administrators and for users who need to perform administrative tasks on the Report Server.

Adding Role Assignments

In the standard security model, Reporting Services requires users to be authenticated by the
Windows operating system. It is possible to create a custom security extension when you need
to use a different method to authenticate users. (Creating custom extensions is discussed in
Chapter 18, “Building Custom Reporting Tools.”) Using the standard security model, you must
use existing local or domain user accounts or groups in order to create a new role assignment.

For any one item, a user or group can have only one role assignment. You can, however, estab-
lish a role assignment for a user who is also a member of a group with a role assignment for
the same item. Reporting Services grants that user permissions for all the tasks in the role def-
initions of both the user and group role assignments.

In theory, you could create a unique role assignment for a single user for every report on the
server, but a much simpler approach is to place role assignments on folders. The items con-
tained in a secured folder, as well the contents of the folders it contains, inherit the parent
folder’s security settings. You can break the chain of inheritance at any level, either for a
branch of the folder tree, or for an individual report, resource, or data source.

The five default roles provided with Reporting Services will likely meet most of your security
requirements. Browser is the most restrictive role and limits users to navigating through the
folder hierarchy and opening reports. The Report Builder role has the same permissions as
Browser, but includes the ability to load report definitions from the report server into a local
instance of Report Builder. My Reports, which assumes that you enabled the My Reports fea-
ture on the Report Server, allows users to manage their own reports separately from the main
folder hierarchy. Publisher allows users to add content to the Report Server. Content Manager,
the broadest role, allows a user to take ownership of the item, including the ability to manage
security. Incidentally, as a member of the local system administrators on the Report Server
computer, you are automatically granted the permissions of the Content Manager role, which
gives you the ability to set security.

The following table shows a checkmark for tasks enabled by default for each role. In general,
the term manage in a task means the ability to add, change, or delete the item.

6-2250-7.book Page 272 Tuesday, March 21, 2006 3:45 PM

Chapter 10: Managing Security 273

In this procedure, you’ll add a role assignment to the Home folder for the group AWSalesAnalyst.

Add a Browser role assignment

1. Open Report Manager in Internet Explorer at http://localhost/Reports.

2. Click the Properties tab.

Default Task Browser
Report
Builder

My
Reports Publisher

Content
Manager

Consume reports � �

Create linked reports � � �

Manage all
subscriptions

�

Manage data sources � � �

Manage folders � � �

Manage individual
subscriptions

� � � �

Manage models � �

Manage report history � �

Manage reports � � �

Manage resources � � �

Set security for
individual items

�

View data sources � �

View folders � � � �

View models � � �

View reports � � � �

View resources � � � �

6-2250-7.book Page 273 Tuesday, March 21, 2006 3:45 PM

274 Part III: Managing the Report Server

The Security Properties page for the Home folder is displayed:

The default role assignment for the Home folder is Content Manager, to which the local
system administrators group, BUILTIN\Administrators, is assigned.

3. Click New Role Assignment on the Report Manager toolbar.

The New Role Assignment page is displayed:

6-2250-7.book Page 274 Tuesday, March 21, 2006 3:45 PM

Chapter 10: Managing Security 275

4. Click the Browser link to view the tasks in the role definition, as shown here:

Note You can also reach this page to add a new role or edit an existing role at any
time by using the Site Settings link at the top of any Report Manager page. Follow the
Configure Item-Level Role Definitions link to access the Item-Level Roles page.

Here you can see a full description of each task to help you decide the task assignments
for the current role.

Important Be careful when adding or removing tasks from the role definition. The
impact can be far-reaching, because every role assignment with the modified role will be
immediately changed across the Report Server. If an item does not currently have an
explicit role assignment, remember that its security is inherited from its parent folder
(which might, in turn, inherit from a higher-level parent folder).

5. Click Cancel.

6. In the Group Or User Name box, type AWSalesAnalyst.

Note The AWSalesAnalyst is a Windows group you should have added to the local
groups on your computer as part of the installation of the practice files. If you skipped
this step, please refer to this book’s Introduction for the specific instructions.

6-2250-7.book Page 275 Tuesday, March 21, 2006 3:45 PM

276 Part III: Managing the Report Server

7. Select the Browser check box to select this role.

You can assign a user or group to multiple roles. If you select the Role check box above
the list of roles, you can select all roles with a single click.

Notice that you can add another role by clicking New Role. You can also edit the existing
roles, or even just take a look at the current settings, by clicking the link for the role you
want to review.

8. Click OK.

The Security Properties page of the Home folder is displayed:

Now the AWSalesAnalyst group has access to all folders and reports, because each folder
nested under the Home folder inherits the security properties of the Home folder.

In this procedure, you’ll add a role assignment to the Home folder for the group AWSalesDirector.

Add a Content Manager role assignment

1. On the Properties page of the Home folder, click New Role Assignment on the Report
Manager toolbar.

2. In the Group Or User Name box, type AWSalesDirector.

Note The AWSalesDirector is a Windows group you should have added to the local
groups on your computer as part of the installation of the practice files. If you skipped
this step, please refer to this book’s Introduction for specific instructions.

6-2250-7.book Page 276 Tuesday, March 21, 2006 3:45 PM

Chapter 10: Managing Security 277

3. Select the Content Manager check box to select this role.

4. Click OK.

The Security Properties page of the Home folder is displayed:

Now the AWSalesDirector group can perform any task assigned to the Content Manager
role for any folder and its contents on the Report Server.

Applying Item Security

When you apply security to a folder, the items within that folder and its nested folders inherit
the same security settings. If you take away the ability to view a report or other item, the user
will not even see that item on the Contents page. Whenever possible, organize content by
folder so you can take advantage of this functionality and also minimize the administrative
overhead of managing security for individual items. To handle exceptions to the rule, you can
override security on individual items by adding role assignments to reports, resources, or data
sources. After choosing to override security on an item, you’ll have the option to restore the
parent folder’s security settings when needed.

In this procedure, you’ll restrict access to the Adventure Works Bikes folder by removing a role
assignment for the group AWSalesAnalyst to this folder.

Edit report security

1. On the Security Properties page of the Home folder in Report Manager, click the Con-
tents tab.

6-2250-7.book Page 277 Tuesday, March 21, 2006 3:45 PM

278 Part III: Managing the Report Server

Note If you skipped Chapter 9, to follow the procedures in this chapter, run
publishChap10.cmd in the C:\Documents and Settings\<username>\My Documents
\Microsoft Press\rs2005sbs\chap10 folder so you can publish the reports you need.
You will need to refresh the Home page after publishing the reports.

2. Click the Adventure Works Bikes folder, click the Properties tab, and then click the
Security link.

The Security Properties page of the Adventure Works Bikes folder is displayed:

The same role assignments appear in this folder because they were inherited from the
Home folder.

3. Click Edit Item Security.

A warning message is displayed:

This message is a reminder that, if you proceed, the Adventure Works Bikes folder will
no longer inherit security settings from the Home folder.

6-2250-7.book Page 278 Tuesday, March 21, 2006 3:45 PM

Chapter 10: Managing Security 279

4. Click OK.

The Security Properties page of the Adventure Works Bikes folder is displayed:

Notice that a new button, Revert To Parent Security, appears on the Report Manager
toolbar. If you change your mind about security settings for the Adventure Works Bikes
folder, this button provides an easy way to reset the security settings to match the parent
folder, Home.

5. Select the AWSalesAnalyst check box, and then click Delete on the Report Manager toolbar.

6. Click OK to confirm the deletion.

The AWSalesAnalyst role no longer has access to the Adventure Works Bikes folder, but
continues to have access to all other folders.

7. Close Internet Explorer.

8. Click Start, point to All Programs, right-click Internet Explorer, and then click Run As.

9. Select The Following User, and then type SalesAnalyst as the user and SalesAnalyst as
the password.

10. Open Report Manager at http://localhost/Reports.

Note The security settings on your computer may require you to enter credentials
again. Simply type SalesAnalyst again for both the user and password.

6-2250-7.book Page 279 Tuesday, March 21, 2006 3:45 PM

280 Part III: Managing the Report Server

The Home page is displayed:

Notice that the Adventure Works Bikes folder is not visible to the SalesAnalyst user.
Also, notice that the Properties tab is not available for the Home folder. Members of the
AWSalesAnalyst group do not have access to the Site Settings link either because the
Browser role is limited to folder and report links.

Important If you still have access to the Adventure Works Bikes folder after complet-
ing this step, check the members of the Administrators Windows group on your com-
puter. If NT Authority\Authenticated Users is a member of this group, then the
SalesAnalyst will still have access to the folder because the BUILTIN\Administrators per-
missions are instead used to authenticate and authorize this user. To test this procedure,
NT Authority\Authenticated Users cannot be a member of your computer’s Administra-
tors group.

11. Close Internet Explorer.

Applying System Security

System role assignments allow selected users or groups to perform system administration
tasks that are independent of content managed on the server. System roles provide access
only to server activities. If a user is assigned to a system role, but is not assigned to an item-
level role and is not a local system administrator, that user cannot view any content on the
Report Server.

6-2250-7.book Page 280 Tuesday, March 21, 2006 3:45 PM

Chapter 10: Managing Security 281

As a protective measure, local system administrators can always access a Report Server to
change site settings. This way, if someone inadvertently creates role assignments that lock out
all the users, a local administrator can still reset security. However, in case you need to restrict
a local system administrator from opening confidential reports, you will have to implement
security at the data level, which is discussed later in this chapter.

Reporting Services has two default system roles that you can use unchanged or extend to bet-
ter meet your needs. The System User role, by default, allows access to the Site Settings page
so that role members can view the server properties and shared schedules. Any user who
needs to use a shared schedule for executing scheduled reports or creating subscriptions
must be assigned to this role. The default tasks for the System Administrator role include not
only managing server properties and shared schedules (which can be viewed and edited), but
also managing running jobs, system role assignments, and role definitions.

The following table shows a checkmark for tasks enabled by default for each system role.

In this procedure, you’ll assign the AWSalesAnalyst group to a new role based on the System
User role with permission to view shared schedules only.

Add a system role assignment

1. Open Report Manager in Internet Explorer at http://localhost/Reports.

2. Click the Site Settings link at the top-right corner of the Home page.

Anyone with a system role assignment that includes View Report Server Properties or
Manage Report Server Properties will have the Site Settings link on any page in Report
Manager.

Default Task System User System Administrator

Execute report definitions
� �

Generate events

Manage jobs �

Manager report server properties �

Manage report server security �

Manage roles �

Manage shared schedules �

View report server properties �

View shared schedules �

6-2250-7.book Page 281 Tuesday, March 21, 2006 3:45 PM

282 Part III: Managing the Report Server

3. Click the Configure Site-Wide Security link.

The System Role Assignments page is displayed:

Notice the default system role assignment of the local system administrators group,
BUILTIN\Administrators, as System Administrator. You’ll always need at least one Sys-
tem Administrator role assignment.

4. Click New Role Assignment on the Report Manager toolbar.

The New System Role Assignment page is displayed:

6-2250-7.book Page 282 Tuesday, March 21, 2006 3:45 PM

Chapter 10: Managing Security 283

As with item-level role assignments, you can assign a user or group to multiple roles. If
you select the Role check box above the list of roles, you can select all roles.

You can also add another role by clicking New Role, or edit the existing roles by clicking
the role link.

5. Click the System User link.

6. Click Copy.

A new role is created with the same tasks that are assigned to the System User role.

7. Enter a name for the new role: Shared Schedule User.

8. Add a description that details the assigned tasks: View shared schedules.

Tip By listing the tasks in the description, a System Administrator won’t have to open
the role definition to see the task assignments in the New System Role Assignment page.

9. Clear the Execute Report Definitions check box and the View Report Server Properties
check box.

Your screen should look like this:

Tip You can also add a new system role or edit an existing system role whenever nec-
essary by using the Site Settings link at the top of any Report Manager page. Click the
Configure System-Level Role Definitions link to access the System Roles page.

10. Click OK.

6-2250-7.book Page 283 Tuesday, March 21, 2006 3:45 PM

284 Part III: Managing the Report Server

11. In the Group Or User Name box, type AWSalesAnalyst.

12. Select the Shared Schedule User link check box.

Your screen looks like this:

13. Click OK.

The System Role Assignments page is displayed:

Now the AWSalesAnalyst role can use shared schedules with the reports it can access as
defined by item-level role assignments.

6-2250-7.book Page 284 Tuesday, March 21, 2006 3:45 PM

Chapter 10: Managing Security 285

Applying Data Security
Sometimes different users need access to the same report, but each user is allowed to see only
some of the data. For example, a sales territory manager might be allowed to view only data
that pertains to his or her sales territory. In this case, using item-level security works only if
you create a separate report using a different query in each report to restrict the data to a single
sales territory. If many reports require a similar separation for different groups of users, the
administrative overhead of maintaining and securing all the variations can quickly become
overwhelming. Instead, you can choose a technique that leverages the use of one report, yet
still satisfies the requirement to restrict data by user.

The simplest way to restrict the data a user can see in a report is to use linked reports with
parameters. Using this approach, you can easily control which data is displayed in the report,
and then use item-level security to control access to each linked report. Alternatively, you can
design a report that takes advantage of the User function from the global parameters collec-
tion to identify the current user. You can pass the user identification either to a query param-
eter or to a filter to restrict the data in the report.

Using Roles and Parameters to Restrict Data

As you learned in Chapter 7, “Building Advanced Reports,” you can use a report parameter to
filter data at the source with query parameters or to filter the report data after the full dataset
has been retrieved. You can then set a different parameter value in each linked report, which
you learned how to do in Chapter 9. By removing the parameter prompt, you prevent users
from changing the parameter value and thereby restrict the report to the data defined by the
parameter value. You can store each linked report in a separate folder to which you add role
assignments to secure access, or you can add role assignments to each linked report to man-
age security at the report level.

In this procedure, you’ll create a linked report from the Actual Vs Quota report, using a
parameter and item-level security to restrict access to user EuropeDirector and local system
administrators.

Use a query parameter in linked reports to restrict data

1. If the Report Manager isn’t already open, launch it in Internet Explorer at http:
//localhost/Reports.

2. Click the Home link at the top of the page, click the Adventure Works Samples folder
link, click the Actual Vs Quota report link, and then click the Properties tab.

3. Click the Security link.

4. Click Edit Item Security, and then click OK to confirm the folder setting changed from
its parent’s setting.

5. Select the AWSalesAnalyst and the AWSalesDirector check boxes, and then click Delete.

6-2250-7.book Page 285 Tuesday, March 21, 2006 3:45 PM

286 Part III: Managing the Report Server

6. Click OK to confirm the deletion.

7. Click the General link.

8. Click Create Linked Report.

9. Type a name for the report, Actual Vs Quota Europe, and then click OK.

Note Remember that it’s easier to maintain security on a report by folder. In a produc-
tion environment, create a separate folder for the linked report, if one is not already
available, and then create the linked report with that folder’s location specified. Item-
level security can then be set on the folder rather than on its contents separately. These
steps are omitted here to focus on using parameters as part of your security solution.

Notice that the Group parameter defaults to North America. For this linked report, you
need to change this value to Europe, and then hide the parameter prompt.

10. Click the Properties tab, and then click the Parameters link.

11. Type Europe in the Group parameter’s Default Value box.

12. For the Group parameter, clear the Prompt User check box.

The Parameters Properties page looks like this:

13. Click Apply.

14. Click the Security link.

6-2250-7.book Page 286 Tuesday, March 21, 2006 3:45 PM

Chapter 10: Managing Security 287

15. Click Edit Item Security, and then click OK to confirm the folder setting change from its
parent’s setting.

16. Click New Role Assignment.

17. Type EuropeDirector in the Group Or User Name box.

Note The EuropeDirector is a Windows user that you should have added to the local
users on your computer as part of the installation of the practice files.

18. Select the Browser check box.

19. Click OK.

The Security Properties page of the Actual Vs Quota Europe report looks like this:

20. Close Internet Explorer.

21. Click Start, point to All Programs, right-click Internet Explorer, and then click Run As.

22. Click The Following User, and then type EuropeDirector as the user and EuropeDirec-
tor as the password.

23. Open Report Manager at http://localhost/Reports.

24. Click the Adventure Works Samples folder link, and then click the Actual Vs Quota
Europe report.

Notice that the Actual Vs Quota report is no longer visible.

6-2250-7.book Page 287 Tuesday, March 21, 2006 3:45 PM

288 Part III: Managing the Report Server

25. Click the View tab, click Full Screen to expand the view, and then scroll down to view
the whole table.

The report page looks like this:

You should see only the following Sales Representatives for Europe: Amy Alberts, José
Saraiva, Rachel Valdez, and Ranjit Varkey Chudukatil.

26. Close Internet Explorer.

27. Click Start, point to All Programs, right-click Internet Explorer, and then click Run As.

28. Select The Following User, and then type NADirector as the user and NADirector as
the password.

29. Open Report Manager at http://localhost/Reports.

30. Click the Adventure Works Samples folder link.

Neither the Actual Vs Quota nor the Actual Vs Quota Europe is available to the NADirector,
since the item-level security doesn’t include a role assignment for this user.

31. Close Internet Explorer.

Restricting the Source Query by User

Using parameters and linked reports to restrict access is a good approach when you’re not
concerned about local system administrators opening these reports. Even if a Content Man-
ager removes the BUILTIN\Administrators role assignment from a report, a local system
administrator still has the ability to reset security and the potential to open restricted reports.
To protect confidential data, you can design a report that uses a query parameter to filter the

6-2250-7.book Page 288 Tuesday, March 21, 2006 3:45 PM

Chapter 10: Managing Security 289

dataset at the source based on the current user (which should be a domain user account
rather than a local user account to further tighten security).

This technique requires you to create and maintain a permissions table that maps a Windows
user account with a value used to restrict the data. For example, you can map the user account
EuropeDirector to value Europe. The permissions table includes a column for the user
account and a column for the value filter. Then, you add the permissions table to the dataset
query in the confidential report and join the value filter column in the permissions table to
the corresponding column in an existing table in the query. You also add a query parameter
to the WHERE clause of the query that compares the user account column in the permissions
table to a query parameter. This query parameter will be used differently from the way you
learned to use a query parameter in Chapter 7 because its value comes not from a report
parameter, but from the operating system. To get the value from the operating system, you use
the expression =User!UserID.

When you use the @UserID query parameter in a dataset, the report must always run on demand
to set the proper user context. Therefore, you’ll have many more queries against the source data-
base than would result if you instead filtered the dataset, which you’ll learn how to do later in this
chapter. Because the query returns fewer rows than it would without the @UserID query param-
eter, the query might run faster, but you will need to weigh performance against the impact of
more database queries when designing restricted reports for your organization.

In this procedure, you’ll add a query parameter to a report’s dataset to pass the current user
as a filter in the source query.

Add a query parameter to a report

1. Open SQL Server Management Studio and connect to the Database Engine.

2. Expand the (localhost) server (or the instance to which you installed Reporting Services
and the practice files) and navigate to the Tables folder of database rs2005sbsDW.

3. Right-click PermissionsSalesTerritory table, and then click Open Table.

The data in this table is displayed:

Note This table is populated when you install the practice files. The domain name of
the users in the UserId column should match your computer name.

6-2250-7.book Page 289 Tuesday, March 21, 2006 3:45 PM

290 Part III: Managing the Report Server

This table maps users to sales territory groups so you can customize the Securing-
SourceQuery report for each territory group director. You must create a similar table to
use with your data sources when you need to restrict data by user. You can certainly
include other columns in your own permissions table, but at minimum, you need a col-
umn for the full name of the Windows account and a column to hold the value to filter
the data at the source.

4. Close SQL Server Management Studio.

5. Start SQL Server Business Intelligence Development Studio and open the solution
DataSecurity in the C:\Documents and Settings\<username>\My Documents
\Microsoft Press\rs2005sbs\chap10\DataSecurity folder.

6. In Solution Explorer, double-click SecuringSourceQuery.rdl to open the report.

7. Click the Data tab.

8. Click Show/Hide Grid Pane on the Query Designer toolbar, and then click Show/Hide
Result Pane to make some room for the Diagram and SQL Panes.

9. With Detail selected in the Dataset drop-down list, click Add table on the Query
Designer toolbar.

10. Double-click the PermissionsSalesTerritory table, and then click Close.

11. Click the SalesTerritoryGroup field in the DimSalesTerritory table and drag the mouse to
the SalesTerritoryGroup field in the PermissionsSalesTerritory table.

Your Diagram pane, when fully visible, should look similar to this:

The PermissionsSalesTerritory table is now joined to the DimSalesTerritory table on the
SalesTerritoryGroup column. However, the query still needs to be modified to use this
join to filter the dataset by user.

12. Add the following to the end of the WHERE clause:

and PermissionsSalesTerritory.UserId = @UserID

13. Click Edit Selected Dataset to the right of the Dataset drop-down list.

6-2250-7.book Page 290 Tuesday, March 21, 2006 3:45 PM

Chapter 10: Managing Security 291

14. Click the Parameters tab in the Dataset dialog box.

15. In the Parameters list, change the value for the @UserID query parameter to =User!UserID.

The Dataset dialog box looks like this:

The expression =User!UserID returns the Windows account for the user running the
report, a value that is contained in the User global collection.

16. Click OK.

17. Click the Layout tab, and then click Report Parameters on the Report menu.

18. Click UserID in the Parameters list, click Remove, and then click OK.

When you add a query parameter, a corresponding report parameter is added to the
report. However, in this case, the value for the query parameter is provided from an
expression, so the report parameter should be removed.

Save the solution, and then click the Preview tab to test the report.

6-2250-7.book Page 291 Tuesday, March 21, 2006 3:45 PM

292 Part III: Managing the Report Server

Your screen should look similar to this:

Because your Windows account is not in the permissions table, you cannot see any data
in the report.

Tip When developing reports for your organization, add your Windows account to
the permissions table to properly test reports before deployment.

19. In Solution Explorer, right-click the SecuringSourceQuery.rdl report, and then click
Deploy.

20. Click Start, point to All Programs, right-click Internet Explorer, and then click Run As.

21. Click The Following User, and then type EuropeDirector as the user and EuropeDirector
as the password.

22. Open Report Manager at http://localhost/Reports.

23. Click the DataSecurity folder link, and then click the SecuringSourceQuery report link.

6-2250-7.book Page 292 Tuesday, March 21, 2006 3:45 PM

Chapter 10: Managing Security 293

The top of the report looks like this:

If you scroll through the report, you can see that the data in the report includes only
United Kingdom, Germany, and France. If a user who is not listed in the permissions
table tries to open this report, no data will be displayed, as you experienced when pre-
viewing the report in Visual Studio.

24. Close Internet Explorer.

Filtering the Report Data by User

Another way to protect confidential data is to design a report to use the expression
=User!UserID to filter the dataset after the query executes. As with the query parameter
approach, this approach requires a table of users that can be joined to the dataset. Using this
scenario, you still join the permissions table to an existing table in the query. However,
instead of using the WHERE clause of the query to filter the data by user, you add the UserId
column from the permissions table to the SELECT clause so it becomes a field in the dataset.
Then, you add a filter to the dataset that compares the field value with the value returned by
the expression =User!UserID.

When you filter the dataset by user, the full query runs against the source database each time
the report executes. However, the filter is applied only when the user is browsing the report.
As a result, this method allows you to execute the report on a schedule to minimize the poten-
tial impact on the underlying database of running the full query.

In this procedure, you’ll add a filter to a report’s dataset to limit the display of data in the
report during browsing based on the current user.

6-2250-7.book Page 293 Tuesday, March 21, 2006 3:45 PM

294 Part III: Managing the Report Server

Add a filter to a report

1. In Solution Explorer in Visual Studio, double-click SecuringReportData.rdl to open the
report.

2. Click the Data tab.

3. With Detail selected in the Dataset drop-down list, click Add Table on the Query
Designer toolbar.

4. Double-click the PermissionsSalesTerritory table, and then click Close.

5. Click the SalesTerritoryGroup field in the DimSalesTerritory table and drag the mouse
pointer to the SalesTerritoryGroup field in the PermissionsSalesTerrritory table.

6. In the PermissionSalesTerritory table, click UserId to add the column to the query’s
SELECT clause.

7. Click Edit Selected Dataset to the right of the Dataset drop-down list.

8. Click the Filters tab in the Dataset dialog box.

9. Click =Fields@UserId.Value in the Expression drop-down list.

10. Click <Expression…> in the Value drop-down list.

11. Click Globals in the Fields list, click UserID, and then click Paste. Alternatively, you can
type =User!UserID in the Expression box.

The Dataset dialog box looks like this:

12. Click OK.

13. Save the solution, and then click the Preview tab.

As with the SecuringSourceQuery report, you cannot see any data in the report because
your user account is not in the permissions table.

6-2250-7.book Page 294 Tuesday, March 21, 2006 3:45 PM

Chapter 10: Managing Security 295

14. Right-click the SecuringReportData.rdl report in Solution Explorer, and then click
Deploy.

15. Click Start, point to All Programs, right-click Internet Explorer, and then click Run As.

16. Select The Following User, and then type NADirector as the user and NADirector as
the password.

17. Open Report Manager at http://localhost/Reports.

Click the DataSecurity folder link, and click the SecuringReportData report.

The top of the report looks like this:

If you scroll through the report, you can see that the data in the report includes only
North American territories—the United States and Canada.

18. Close Internet Explorer.

6-2250-7.book Page 295 Tuesday, March 21, 2006 3:45 PM

296 Part III: Managing the Report Server

Chapter 10 Quick Reference

To Do this

Add an item-level role assignment to a folder Navigate to the folder in Report Manager, click the
Properties tab, and then click the Security link. Click
New Role Assignment, type a Windows user or group
account, and then select one or more roles to assign.

Add an item-level role assignment to a report,
resource, or data source

Open the item in Report Manager, click the Properties
tab if necessary, and then click the Security link. Click
Edit Item Security and click OK to confirm the change
from the folder’s security settings. Click New Role As-
signment, type a Windows user or group account, and
then select one or more roles to assign.

Add an item-level role Click the Site Settings link in Report Manager, click the
Configure Item-Level Role Definitions link, and then
click New Role. Type a name and a description for the
new role, and then click the tasks to be assigned to the
role.

Add a system role assignment Click the Site Settings link in Report Manager, and
then click the Configure Site-Wide Security link. Click
New Role Assignment, type a Windows user or group
account, and then select one or more roles to assign.

Add a system role Click the Site Settings link in Report Manager, click the
Configure System-Level Role Definitions link, and then
click New Role. Type a name and description for the
new role, and then click the tasks to be assigned to the
role.

Restrict data using linked reports with a query
parameter and item-level security

In Report Manager, open the base report, and then
click the Properties tab. On the General Properties
page, click Create Linked Report and name the linked
report. Click the Properties tab, and then click the Pa-
rameters link. Enter a default value for the parameter
and clear the Prompt User check box, if necessary.
Then, click Apply. Click the Security link, and then
click Edit Item Security to make role assignments as
needed.

6-2250-7.book Page 296 Tuesday, March 21, 2006 3:45 PM

Chapter 10: Managing Security 297

Restrict data using a query parameter and
permissions table

Create a permissions table that contains user
accounts and filter values. Join the permissions table
to a table in the dataset query on columns containing
the filter value, and then add a query parameter to the
WHERE clause of the query that references the permis-
sion table’s user account column. For example:

and PermissionsSalesTerritory.UserId = @UserID

Click Edit Selected Dataset, click the Parameters tab,
and then change the Value for the query parameter to
=User!UserID. Click the Layout tab, click Report Para-
meters on the Report menu, click UserID in the Para-
meters list, and then click Remove.

Restrict data using a dataset filter and
permissions table

Create a permissions table that contains user
accounts and filter values. Join the permissions
table to a table in the dataset query on columns
containing the filter value, and then add the permis-
sion table’s user account column to the SELECT clause
of the query. Click Edit Selected Dataset, and then click
the Filters tab. Click =Fields!UserID in the Expression
list box. Click <Expression…> in the Value list box, and
then enter =User!UserID as an expression.

To Do this

6-2250-7.book Page 297 Tuesday, March 21, 2006 3:45 PM

6-2250-7.book Page 298 Tuesday, March 21, 2006 3:45 PM

299

Chapter 11

Managing Server Components

After completing this chapter, you will be able to:

■ Use configuration files to modify Reporting Services components.

■ Monitor Reporting Services performance with execution logging.

■ Terminate or suspend jobs.

■ Manage the Reporting Services databases.

In the previous two chapters, you learned how to publish and secure content on the Report
Server as part of the management stage of the reporting life cycle. Another aspect of manage-
ment concerns the maintenance of the components that support the reporting life cycle. In
this chapter, you’ll learn how to configure these Reporting Services components. You’ll also
learn several ways to monitor activity on the Report Server so you can tune the design of
reports or the configuration of server components for optimal performance. In addition, you’ll
encounter the options for limiting or temporarily suspending the execution of reports so you
can proactively manage activity on the server. Management of the server also includes moni-
toring database growth and protecting the data in the case of disaster, so this chapter closes
by showing you which tables require the most attention (and why) and by recommending a
backup strategy for your databases.

Configuring Reporting Services
Settings that you can change to control the behavior of Reporting Services components are
contained in four configuration files. Some of the settings in these configuration files are sup-
plied by you during installation; the remaining settings have default values you can change as
needed. Each configuration file is associated with a separate component, which is shown in
the following table:

Component Configuration File Default Installation Folder

Report Server
engine

rsreportserver.config Program Files\Microsoft SQL Server\MSSQL.3
\Reporting Services\ReportServer

Report Server
service

ReportingServices-
Service.exe.config

Program Files\Microsoft SQL Server\MSSQL.3
\Reporting Services\ReportServer\bin

Report Manager RSWebApplication
.config

Program Files\Microsoft SQL Server\MSSQL.3
\Reporting Services\ReportManager

Report Designer RSReportDesigner
.config

Program Files\Microsoft Visual Studio 8\Common
7\IDE\PrivateAssemblies

6-2250-7.book Page 299 Tuesday, March 21, 2006 3:45 PM

300 Part III: Managing the Report Server

Notice that Report Server has two configuration files. One—ReportingServicesService.exe
.config—controls only the trace logs, which will be covered later in the chapter. The other—
RSReportServer.config—controls everything else. Of all the configuration files, RSReport-
Server.config is the most important.

Report Manager and Report Designer are applications that are separate from the core report
server engine. If you use a custom or third-party application instead of these applications, you
don’t need to concern yourself with configuring Report Manager and Report Designer. How-
ever, if you do use either of these applications and need to make a configuration change, such
as add a rendering extension, you modify the corresponding configuration files.

In addition to the four main configuration files just described, the two Web services—Report
Manager and the Report Server—each have a Web.config file, like many ASP.NET Web applica-
tions. You might want to modify these configuration files to control trace logs or to add con-
figuration settings for your own custom applications that use the Reporting Services platform.

Reporting Services also includes some configuration files that are internally managed and
should not be modified. For example, RSPreviewPolicy.config (for Report Designer), rsmgr-
policy.config (for Report Manager), and rssrvpolicy.config (for the Report Server Service) all
manage encrypted keys for critical trusted services. There are also some .ini configuration files
that are used for internal purposes and should not be modified.

If you need to change the default behavior of Reporting Services, you can use an XML editor
to modify the rsreportserver.config file. Connection information stored in rsreportserver.con-
fig is encrypted, so naturally, you cannot simply edit the XML file. You must use a connection
utility that is installed with Reporting Services to make changes to the encrypted data.

Editing the rsreportserver.config File

The rsreportserver.config file contains all the settings that apply to the report server engine
(except the trace log settings). These settings include the connection string for the Report-
Server database, thread and memory management settings, time-out values, Simple Mail
Transfer Protocol (SMTP) server settings, and an open connection limit setting for a single
user. (For a complete list of settings in this and other configuration files, refer to SQL Server
Books Online.) This file also contains configuration information about delivery, rendering,
data, and security extensions, so if you create a custom extension (as discussed in Chapter 18,
“Building Custom Reporting Tools”), you’ll need to modify this file.

Note The RSWebApplication.config file contains settings needed by the Report Manager
application. Report Manager needs to know the URL for the Report Server Web service, so if
you change the location of the Report Server service, you need to change the URL stored in the
RSWebApplication.config file.

6-2250-7.book Page 300 Tuesday, March 21, 2006 3:45 PM

Chapter 11: Managing Server Components 301

In this procedure, you’ll edit the rsreportserver.config file in Microsoft Visual Studio to change
the number of active sessions permitted per user.

Change unencrypted information in the RSReportServer.config file

1. Using Windows Explorer, make a backup copy of the rsreportserver.config file in the
C:\Program Files\Microsoft SQL Server\MSSQL.3\Reporting Services\ReportServer
folder (assuming you used the default installation location for Reporting Services).

Important Before making changes to configuration files, you should always make a
copy of the file for restoring settings in case a change you make causes a problem.

2. Using Visual Studio, open rsreportserver.config. Alternatively, you can use any XML edi-
tor, or even Microsoft Notepad, to open a configuration file and make modifications.

Your screen should look similar to this:

Notice the encrypted data in the <Dsn>, <LogonUser>, <LogonDomain>, and <LogonCred>
elements. You need to use a utility to change this data, and you’ll learn about how to use
this utility later in this chapter.

3. Scroll through the file (or press Ctrl+F to use the Find feature) to find the <Unattended-
ExecutionAccount> element.

This section of the configuration file looks like this:

<UnattendedExecutionAccount>

 <UserName></UserName>

6-2250-7.book Page 301 Tuesday, March 21, 2006 3:45 PM

302 Part III: Managing the Report Server

 <Password></Password>

 <Domain></Domain>

</UnattendedExecutionAccount>

The elements nested in the <UnattendedExecutionAccount> element currently have no
values (assuming you’re never used the rsconfig utility to add credentials for unattended
reports). Because the data stored here must be encrypted, you can’t provide credentials
using the XML editor at this point, but in the next procedure, you’ll learn how to update
these values.

4. Scroll up from the <UnattendedExecutionAccount> element to find the setting Max-
ActiveReqForOneUser, and then change its value from 20 to 10.

This section of the configuration file looks like this:

<Add Key="MaxActiveReqForOneUser" Value="10"/>

Important Before making any changes to a configuration file, take the time to
review the description of the configuration settings in SQL Server Books Online to be
sure you understand the purpose of a setting and the type of values that are appropriate
for each setting.

By changing this setting, you are limiting each user to a maximum number of 10 active
requests on the Report Server.

5. Save and close the file, but keep Visual Studio open for the next procedure.

Configuration changes are seamlessly integrated into the running application, so you
will not have to stop and restart the service.

Changing Encrypted Configuration Information Using the rsconfig
Utility

As you have just seen, to keep the connection information Reporting Services uses to connect
to the ReportServer database properly secured, the values for the connection information ele-
ments in the RSReportServer.config file are encrypted. When you need to change the name of
the ReportServer database, the server instance where the database is located, or the creden-
tials used to connect to the database, you must use the rsconfig utility supplied with Reporting
Services.

You must have administrator privileges on the Report Server to use the rsconfig utility. Here is
the syntax for using this utility on the Report Server using Windows authentication:

rsconfig –c –m computername –s SQLServername –d ReportServerDatabaseName –a windows –u

[domain\]username –p password

6-2250-7.book Page 302 Tuesday, March 21, 2006 3:45 PM

Chapter 11: Managing Server Components 303

You can omit the –m argument if you are running the utility on the Report Server. The –s
argument isn’t needed if the ReportServer database is located in a local default SQL Server
instance. If the database is located in a named instance, use servername\instancename for
the –s argument. For the –a argument, you will need to instead use sql rather than windows
if you are using a SQL login to connect to the server. You can add an additional –t argument
(with no value) to add trace information to error messages.

Note When you use the –c argument with the rsconfig utility, the values in the <Dsn>,
<LogonUser>, <LogonDomain>, and <LogonCred> elements are updated with encrypted val-
ues. One common scenario that requires using this utility is a change to the credentials used to
connect to the ReportServer database. Another common situation is the movement of the
ReportServer database to a remote SQL Server instance, which requires a change to the con-
nection information that can only be made using the rsconfig utility.

If you have reports that run unattended (scheduled reports and subscriptions) and use a data
source that does not require credentials, the Report Server still needs credentials to connect to
the computer hosting a remote data source. You use the rsconfig utility to store the credentials
to connect to the remote computer as encrypted data in the Report Server’s configuration file.

Note This situation should be pretty rare, since all of your data sources should be secured.
However, there may be a circumstance where you have a database that contains general refer-
ence information that doesn’t require security. If an unattended report using such a database
tries to run when Report Server has no credentials to use to connect to the host computer, the
execution will fail.

The syntax to use to add credentials for unattended report processing is

rsconfig –e –m computername –s SQLServername –u [domain\]username –p password

Again, you can omit the –m and –s arguments if you’re running the on a ReportServer with a
local SQL Server instance. The –t argument can also be used to add trace information to error
messages when configuring the unattended report execution credentials.

In this procedure, you’ll add credentials for the Report Server to use when running unat-
tended reports.

Encrypt credentials for unattended reports

1. On the Start menu, click Run, type cmd, and then click OK to open a Command Prompt
window.

2. Type rsconfig -? to view the online help for this utility.

6-2250-7.book Page 303 Tuesday, March 21, 2006 3:45 PM

304 Part III: Managing the Report Server

3. Run the rsconfig utility by typing the following: rsconfig –e –u YourUserName –p
YourPassword (replacing YourUserName and YourPassword with a valid domain\user
name and password).

Note The syntax used in this step assumes that you have all components installed on
your local computer. If you later want to use your local installation of Reporting Services
in a production environment, use the rsconfig utility to assign the appropriate creden-
tials. If you don’t want to assign any credentials for unattended reports, you can edit the
XML file to clear the values for the elements nested in the <UnattendedExecutionAc-
count> element—but don’t remove the element tags.

4. Using Visual Studio, open the rsreportserver.config file in the C:\Program Files
\Microsoft SQL Server\MSSQL.3\Reporting Services\ReportServer folder (assuming
you used the default installation location for Reporting Services).

5. Scroll through the file to find the <UnattendedExecutionAccount> element.

This section of the configuration file looks similar to this:

The elements nested in the <UnattendedExecutionAccount> element now have values,
each of which is encrypted.

6. Close the file, but keep Visual Studio open for the next procedure.

6-2250-7.book Page 304 Tuesday, March 21, 2006 3:45 PM

Chapter 11: Managing Server Components 305

Configuring Tracing on the Report Server

Reporting Services records information about server operations in trace logs that are located
in the C:\Program Files\Microsoft SQL Server\MSSQL.3\Reporting Services\LogFiles folder.
Each day, beginning with the first traceable activity that occurs after midnight (local time for
the Report Server) or again if Reporting Services is restarted, new trace logs are created. There
are four types of trace log files:

■ ReportServerService_main_<timestamp>.log Logs operations of the Report Server
Windows and Web services, such as server resource allocation and initialization of set-
tings defined in the configuration files.

■ ReportServerService_<timestamp>.log Records details about operations, such as the
initialization of certain service settings as well as the status of polling activities related to
schedules, subscriptions, and delivery notifications.

■ ReportServerWebApp_<timestamp>.log Captures information about Report Manager
operations, such as HTTP headers and stack trace information, as well as SOAP enve-
lopes and exceptions.

■ ReportServer_<timestamp>.log Logs various information for the Report Server engine,
such as exceptions and warnings generated by the Report Server or calls to perform
actions like processing reports, creating folders, or deleting items.

These trace logs can be quite helpful when you are debugging a custom application that
uses the Report Server, or if you need to troubleshoot a problem that appears in the event
log or execution log. (You’ll learn more about these other logs later in this chapter.) You can
control the amount of detail that is recorded in the trace log files by changing the value of
the DefaultTraceSwitch setting in the ReportingServicesService.exe.config file and the
Web.config file (found in the C:\Program Files\Microsoft SQL Server\MSSQL.3\Reporting
Services\ReportServer\bin). You can also disable tracing with this setting, but Microsoft rec-
ommends that you always trace at some level in case you ever need to troubleshoot an issue.
The possible values for this setting are shown in the following table.

Value Tracing Level

0 Disables tracing

1 Exceptions and restarts

2 Exceptions, restarts, and warnings

3 Exceptions, restarts, warnings, and status messages (Default setting)

4 Verbose mode

6-2250-7.book Page 305 Tuesday, March 21, 2006 3:45 PM

306 Part III: Managing the Report Server

You can also change settings in the ReportingServicesService.exe.config file to route tracing to
a debug window instead of to a file. You can use another setting in this file to limit tracing to
a single component. By default, trace logs are created for the Report Server, Report Server Web
Application, and Report Server service. In addition, you can change the number of days for
which trace logs are kept. As a reminder, before making any changes to a configuration file,
first read the description of the configuration settings in SQL Server Books Online.

In this procedure, you’ll change the ReportingServicesService.exe.config file to keep log files
for 10 days only.

Edit the ReportingServicesService.exe.config file

1. Using Visual Studio, open the ReportingServicesService.exe.config file in the C:
\Program Files\Microsoft SQL Server\MSSQL.3\Reporting Services\ReportServer\bin
folder (assuming you used the default installation location for Reporting Services).

The top of the configuration file looks like this:

<configuration>

 <configSections>

 <section name="RStrace" type="Microsoft.ReportingServices.

 Diagnostics.RSTraceSectionHandler,

 Microsoft.ReportingServices.Diagnostics" />

 </configSections>

 <system.diagnostics>

 <switches>

 <add name="DefaultTraceSwitch" value="3" />

 </switches>

 </system.diagnostics>

 <RStrace>

 <add name="FileName" value="ReportServerService_" />

 <add name="FileSizeLimitMb" value="32" />

 <add name="KeepFilesForDays" value="14" />

 <add name="Prefix" value="tid, time" />

 <add name="TraceListeners" value="debugwindow, file" />

 <add name="TraceFileMode" value="unique" />

 <add name="Components" value="all" />

 </RStrace>

Notice the default value of 3 for the DefaultTraceSwitch setting that controls the level of
tracing.

2. Change the setting KeepFilesForDays value to 10.

You can increase or decrease this number as desired to control the length of time that
trace logs are kept. When the number of days is exceeded, the trace logs are deleted
from the file system.

3. Save and then close the file.

6-2250-7.book Page 306 Tuesday, March 21, 2006 3:45 PM

Chapter 11: Managing Server Components 307

Managing the Report Server
In addition to using trace logs to capture details about Reporting Services operations, you can
use an execution log to help you manage report execution. An execution log provides even
more detail about the reports that are processed than you’ll find in the trace log. With an exe-
cution log, you can monitor the duration and success rate of report executions; identify bot-
tlenecks by examining execution times; and optimize report executions by using request
frequency, execution times, and user information to help you choose an appropriate execu-
tion method for each report.

Besides monitoring activity on the server, Reporting Services provides several methods you
can implement to proactively manage the resources on your server. You can use time-out set-
tings to stop queries or report executions that take too long. In addition to this automatic
approach to shutting down jobs, you can manually cancel a job whenever necessary. You can
also temporarily suspend jobs by disabling either a shared data source or a shared schedule.

Using Performance Counters
Reporting Services also includes ASP.NET performance counters for you to monitor the
performance of the services. Reviewing these performance counters can help you make
decisions about how to best manage your server. Performance counters belong to two
performance objects. One object, MSRS 2005 Windows Service, includes counters for all
activity that happens on the server, whether scheduled or interactive. The second object,
MSRS 2005 Web Service, includes counters for activity initiated through a scheduled
operation. Many counters appear in both objects, some are specific to the MSRS 2005
Windows Service object, and others are specific to the MSRS 2005 Web Service object.

Some counters show current state (for example, Active Sessions), some show current
rates (for example, Requests/Sec), and some show a cumulative total since the ser-
vice was last started (for example, Total Requests). To find instructions for using the
Windows Performance tool, search the help file for your operating system. Details
about the performance counters themselves are in SQL Server Books Online.

Here are some performance counters you might monitor regularly:

■ Active Sessions, to obtain the count of all active browser sessions

■ Reports Executed/Sec, to determine the volume of successful report execution

■ Requests/Sec, to compare with Reports Executed/Sec to evaluate the proportion
of reports executed to reports returned from the cache

■ Total Requests, to track the number of requests since the service started

■ Total Processing Failures, to monitor failure rates since the service started as com-
pared with Total Requests

6-2250-7.book Page 307 Tuesday, March 21, 2006 3:45 PM

308 Part III: Managing the Report Server

How to Monitor Performance

You can monitor report execution performance using execution logs. Execution logs differ
from trace logs because the latter are stored in a set of files, whereas execution logs are stored
in the ReportServer database. Because execution logs are intended for continual analysis, the
data is stored relationally. The information that is stored in the ExecutionLog table of the
ReportServer database isn’t the best format for general reporting and analysis, but you can cre-
ate your own logging database to which you can export logging records on a periodic basis.
Reporting Services supplies you with the following tools to facilitate reporting on the logs:

■ A script to create tables in your own database

■ A SQL Server 2005 Integration Services (SSIS) package to load logging records into this
database

■ Reports that allow you to review the execution information loaded into the new database

You will work with these tools later in this chapter. You can schedule the SSIS package to per-
form periodic extracts from the ExecutionLog table to keep your logging database current and
to allow you to delete rows from the log tables.

Managing Execution Logging

You can use the Site Settings page in Report Manager to start or stop execution logging at any
time. You must be assigned to the System Administrator role in SQL Server to be able to
change this setting. By default, execution logging is enabled, and log records will be kept for
only 60 days. You can increase or decrease the number of days as desired to limit the amount
of logging history that accumulates in the ExecutionLog table in the ReportServer database.
Logging records that exceed the specified number are removed each day at 2:00 A.M. (local
time for the Report Server). Alternatively, you can remove this limitation if you want to allow
logging records to accumulate indefinitely. If you use the SSIS package mentioned earlier to
copy the logs to a reporting database, you can delete logs as soon as they are copied to the log-
ging database by adding an additional package step.

In this procedure, you’ll open the Site Settings page in Report Manager to review the current
execution logging settings.

Review current execution logging settings

1. Open Report Manager in Internet Explorer at http://localhost/Reports.

6-2250-7.book Page 308 Tuesday, March 21, 2006 3:45 PM

Chapter 11: Managing Server Components 309

2. Click the Site Settings link to review the settings shown here:

If you want to disable execution logging, you can clear the Enable Report Execution Log-
ging check box. Notice that you can type a different number of days to change the fre-
quency with which logging records are removed from the ExecutionLog table. To make
the changes take effect, click Apply.

Initializing an Execution Log Database

Reporting Services provides the tools you need to effectively report and analyze information
related to report processing. To get started, you will need to create a SQL Server database, and
then you can use a supplied script to build the necessary tables in your new database. After
creating the tables, you can use the SSIS package supplied by Reporting Services to load the
new tables with data from the ExecutionLog table.

In this procedure, you’ll create the RSExecutionLog database in which you’ll create tables
using a script and then use a SSIS package to load data into the tables.

6-2250-7.book Page 309 Tuesday, March 21, 2006 3:45 PM

310 Part III: Managing the Report Server

Create and load the execution log database

1. Open Microsoft SQL Server Management Studio and connect to the Database Engine.

2. Right-click the Databases folder, and then click New Database.

3. Type a name for the database in the New Database properties dialog box:
RSExecutionLog.

4. Click Options, set the Recovery Model to Simple, and then click OK.

5. Click Open File on the toolbar, navigate to the C:\Documents and Settings\<username>
\My Documents\Microsoft Press\rs2005sbs\chap11 folder, open the createtables.sql
file, and connect to the Database Engine.

Note The createtables.sql file is included for your convenience in the practice files.
Reporting Services supplies this file in the SQL Server 2005 samples. After you install the
samples, you’ll find this file in the C:\Program Files\Microsoft SQL Server\90\Samples
\Reporting Services\Report Samples\Server Management Sample Reports\Execution
Log Sample Reports folder.

6. Click RSExecutionLog in the Availalbe Database drop-down list.

7. Click Execute (or press F5) to run the createtables.sql script.

The results of the query execution are displayed in the Messages tab on the Results
pane:

6-2250-7.book Page 310 Tuesday, March 21, 2006 3:45 PM

Chapter 11: Managing Server Components 311

8. In Windows Explorer, double-click the RSExecutionLog_Update.dtsx file in the
C:\Documents and Settings\<username>\My Documents\Microsoft Press\rs2005sbs
\chap11 folder.

The Execute Package Utility dialog box is displayed:

9. Click Execute to start running the package.

Note As with the script file you just used, the RSExecutionLog_Update.dtsx file is also
included for your convenience in the practice files. You can find this file if you installed
the SQL Server 2005 samples section in the C:\Program Files\Microsoft SQL Server
\90\Samples\Reporting Services\Report Samples\Server Management Sample Reports
\Execution Log Sample Reports folder.

6-2250-7.book Page 311 Tuesday, March 21, 2006 3:45 PM

312 Part III: Managing the Report Server

When package execution is complete, your screen looks like this:

10. Click Close. Leave the Execute Package Utility open because you’ll use it again in a later
procedure.

Using an Execution Log Report

To help you review the information extracted to the RSExecutionLog database, Reporting
Services supplies several sample execution logging reports. The practice files supplied with
this book include several more reports to review execution log information. You can use the
reports with or without modification, or add your own reports to use the execution logging
information in different ways.

In this procedure, you’ll deploy the execution logging reports, review the Average Report Exe-
cution Times report, and then deploy reports for comparing execution times.

Deploy execution logging reports

1. Using Visual Studio, open the ExecutionLog solution in the C:\Documents and Settings
\<username>\My Documents\Microsoft Press\rs2005sbs\chap11\Execution Log
folder.

6-2250-7.book Page 312 Tuesday, March 21, 2006 3:45 PM

Chapter 11: Managing Server Components 313

The Solution Explorer window looks like this:

Note The shared data source in this solution assumes you’ve named the new database
RSExecutionLog, as described in the previous procedure, and that the database is on the
local server.

2. Right-click the ExecutionLog project, and then click Deploy.

3. When the project successfully deploys, open the Home page in Report Manager.

4. Click the Example Reports folder link, click the Execution Log Reports folder link, and
then click the Average Report Execution Times report link.

The top of the report looks similar to this:

6-2250-7.book Page 313 Tuesday, March 21, 2006 3:45 PM

314 Part III: Managing the Report Server

You’ll see report names and metrics in this report that correspond to your usage of
Reporting Services, but the speed of your computer might result in times different from
those shown in this report. You’ll need to scroll horizontally to see all averages calcu-
lated for a report. Notice the report parameters to select a start and end date for the
report. The default values for these report parameters are calculated from the earliest
and latest dates in the RSExecutionLog database tables.

In the sample report shown here, the Product Sales and Profitability report has the long-
est rendering time. Your computer might render faster or slower. As you review the
details of this report, you can see that the reports are listed in descending order of aver-
age total execution time. This execution time includes data retrieval, processing, and
rendering time, which are displayed in separate columns for comparison.

5. Using Visual Studio, open the Filter vs Parameter solution in the C:\Documents and
Settings\<username>\My Documents\Microsoft Press\rs2005sbs\chap11\Execution
Log folder.

6. On the Build menu, click Deploy Filter vs Parameter.

The two reports in this solution use identical queries. You will execute these reports to
compare the difference between the time to execute a report that uses a dataset filter,
Product Profitability Filter, and the time to execute a report that uses a query parameter,
Product Profitability Query Parameter.

7. When the project successfully deploys, switch from Visual Studio to Report Manager,
and then click the Execution Log Reports link.

8. Click the Product Profitability Filter report link to execute the report.

The execution time required for this report includes data retrieval, report processing,
and rendering time, because this is the first time the report has been executed since
deployment to the Report Server.

9. In the Category drop-down list, select Accessory, and then click View Report.

Since this report uses a dataset filter, there is no execution time for data retrieval or
report processing when you change the category value. Only rendering time will be
required to display Accessory data in this report.

10. In the Category drop-down list, select Bike, click View Report, and then repeat this step
for the Clothing category.

11. Click the Execution Log Reports folder link.

12. Click the Product Profitability Query Parameter Report link to execute the report.

13. In the Category drop-down list, select Accessory, click View Report, and then repeat this
step for the Bike category, and then again for the Clothing category.

This report is created with query parameters, so each time you click View Report, execu-
tion time includes data retrieval, report processing, and rendering time.

6-2250-7.book Page 314 Tuesday, March 21, 2006 3:45 PM

Chapter 11: Managing Server Components 315

14. Click the Execution Log Reports folder link.

15. Click the Average Report Execution Times report link.

Notice that neither the Product Profitability Filter report nor the Product Profitability
Query Parameter report is displayed in this report. The execution log reports are depen-
dent on the data that currently exists in the RSExecutionLog database, which was
extracted before you executed the product reports. You need to update the RSExecution-
Log database to append records for the execution logging for the product reports.

Adding Current Data to the Execution Log

The RSExecutionLog is not designed to stay synchronized with the execution logging data in
the ReportServer database. You need to determine a reasonable frequency for updating the
RSExecutionLog database with new execution logging records, and then schedule the SSIS
package to execute with this frequency. (Refer to SQL Server Books Online for more informa-
tion about scheduling an SSIS package.)

In this procedure, you’ll update the RSExecutionLog database by executing the RS-
ExecutionLog_Update package.

Update the execution log database

1. Switch to the Execute Package Utility, and then click Execute.

2. Click Close twice.

The SSIS package appended new records to the RSExecutionLog database.

Note Rather than append records to the logging database, you might want to
remove records for older data. You can use the cleanup.sql script in the C:\Documents
and Settings\<username>\My Documents\Microsoft Press\rs2005sbs\chap11 folder.
This file is also located in the C:\Program Files\Microsoft SQL Server\90\Samples
\Reporting Services\Report Samples\Server Management Sample Reports\Execution
Log Sample Reports folder if you installed the SQL Server 2005 samples.

3. Close the Execute Package Utility.

In this procedure, you’ll use execution logging reports to compare the performance of the
Product Profitability Filter and Product Profitability Query Parameter reports.

Compare execution performance

1. In Report Manager, return to the Execution Log Reports page, and then click the Aver-
age Report Execution Times report link.

2. If necessary, replace the values in the Start Date and End Date boxes with the current
date and time in the End Date box, and then click View Report. You might need to scroll
through the report to find the product reports.

6-2250-7.book Page 315 Tuesday, March 21, 2006 3:45 PM

316 Part III: Managing the Report Server

The averages for the product reports should look similar to this:

Note The report shown in this example was exported to Microsoft Excel and refor-
matted to better display all data for these two reports. You might need to scroll horizon-
tally to view the values in each column in Report Manager.

The averages shown in your report will differ because of variations in server configura-
tions. Using the report illustrated here, you can see that the relative performance of the
two reports is similar. The average rendering time of the two product reports in the pre-
vious illustration is nearly the same, because rendering was required when each report
was opened and each time View Report was clicked. The processing time and data
retrieval time is greater for the Product Profitability Filter report, even though the query
executed only once. However, the query retrieved data for all categories, which
increased the data retrieval time as well as the processing time of the report. In the case
of the Product Profitability Query Parameter report, the use of query parameters to
retrieve a smaller dataset actually resulted in faster performance overall compared to the
other report.

As indicated in the Average Report Execution Times report, the times displayed in the
report are milliseconds, so any delay experienced by the user in executing these reports
is not particularly noticeable. However, when you are working with reports including
production data, you can use the information in the Average Report Execution Times
report to help you discover bottlenecks so you can take appropriate action to resolve
report problems. For example, if you see that data retrieval is consuming a considerable
amount of the overall processing time, you might try to improve the performance of the
SQL query. If, on the other hand, you see processing is taking a long time, you might
look for ways to reduce the complexity of the report.

3. Click the Execution Log Reports folder link, and then click the Report Parameters
report link.

4. Expand Product Profitability Filter, and then expand Product Profitability Query
Parameter.

6-2250-7.book Page 316 Tuesday, March 21, 2006 3:45 PM

Chapter 11: Managing Server Components 317

The top of the report looks similar to this:

This report lets you compare and contrast the average total execution time by report
parameter. This average is computed by dividing the total execution time for the report
by the number of report executions.

5. Click the Execution Log Reports folder link, and then click the Report Source Types
report link.

6. Expand Product Profitability Filter, and then expand Product Profitability Query
Parameter.

The top of the report looks similar to this:

Here, you can see execution times by source type. Possible source types are Snapshot,
Live, Cache, and History. Because the source type can affect execution times, you should
review this report when evaluating the performance of a report.

Applying Time-outs to Source Queries

You can only add a source query time-out to a report during the authoring stage. When the
report executes, if the query doesn’t finish before the query time-out is exceeded, the report
execution will fail. You can use a query time-out to protect the source database from the
effect of unexpectedly long-running queries. Each dataset in a report has its own query
time-out setting.

In this procedure, you’ll change the query time-out to the Product Profitability Query Param-
eter report.

6-2250-7.book Page 317 Tuesday, March 21, 2006 3:45 PM

318 Part III: Managing the Report Server

Add a time-out to a source query

1. In Visual Studio, open the Product Profitability Query Parameter report. If you closed
the solution after completing the previous procedure, open the Filter vs Parameter solu-
tion in the folder C:\Documents and Settings\<username>\My Documents\Microsoft
Press\rs2005sbs\chap11\Execution Log, and then open this report.

2. Click the Data tab, select Category in the Dataset drop-down list, and then click Edit
Selected Dataset.

3. Type 60 in the Timeout box.

The Dataset dialog box looks like this:

4. Click OK, and then save the project.

If you were to deploy the report, the query time-out would be applied each time the Cat-
egory query executes.

Applying Time-outs to Report Execution

Another option for managing server resources is to use Report Manager to establish time-outs
for report execution. You can set a global time-out value that applies to all reports on the
Report Server, or you can override the global value on individual reports. You also have the
option of not using time-outs for report execution.

In this procedure, you’ll review the global time-out value and apply a time-out value to the
Average Report Execution Times report.

Add a time-out to report execution

1. In Report Manager, click the Site Settings link.

6-2250-7.book Page 318 Tuesday, March 21, 2006 3:45 PM

Chapter 11: Managing Server Components 319

The Site Settings page looks like this:

Notice that the current default setting for Report Execution Timeout is set to 1800 sec-
onds. This setting will apply to all reports that execute on the Report Server unless you
override the setting for an individual report.

2. Click the Home link.

3. Click the Example Reports folder link, click the Execution Log Reports folder link, and
then click the Average Report Execution Times report link.

4. Click the Properties tab, and then click the Execution link.

5. If necessary, scroll to the bottom of the page to find the Report Execution Timeout
section.

6. Click Limit Report Execution To The Following Number Of Seconds and type 60 in
the box.

6-2250-7.book Page 319 Tuesday, March 21, 2006 3:45 PM

320 Part III: Managing the Report Server

The bottom of the screen looks like this:

7. Click Apply.

Now this report will fail when execution takes longer than 60 seconds. Of course, you’ll
need to monitor reports in your own production environment to determine an appropri-
ate time-out value globally or for individual reports.

Canceling Jobs

In addition to using time-outs to stop a report, you can manually cancel a report by using the
Report Manager. From the Site Settings page, you can access the Manage Jobs page to display
jobs that are currently executing. You can select one or more jobs to cancel on this page. How-
ever, bear in mind that killing the job with Report Manager doesn’t necessarily kill the corre-
sponding process in the source database.

In this procedure, you’ll execute a report to see how jobs appear in the Manage Jobs page. To
perform this procedure, you’ll need to have two instances of Internet Explorer running Report
Manager.

Review the Manage Jobs page

1. In the first instance of Internet Explorer, use Report Manager to navigate to Site Settings.

2. At the bottom of the Site Settings page, click the Manage Jobs link.

This page currently has no jobs to display.

6-2250-7.book Page 320 Tuesday, March 21, 2006 3:45 PM

Chapter 11: Managing Server Components 321

3. In a second instance of Internet Explorer, use Report Manager to open the Reports Exe-
cuted By Day report, which is found in the Execution Log Reports subfolder of the
Example Reports folder.

4. Switch to the first instance of Internet Explorer, and then click Refresh on the Internet
Explorer toolbar to update the page. You might need to click Refresh a few times in
quick succession to see the job appear on this page.

Note If, after a few seconds, you still don’t see the job appear, you might not have
switched between applications quickly enough. In that case, click the Execution Log
Reports link and open another report. Quickly switch to the Manage Jobs page, refresh-
ing the page repeatedly until the job appears. If you still can’t see the job, it might be
that your computer is too fast for the job to display on this page. In a production envi-
ronment, you’ll likely have an opportunity to monitor jobs on this page.

The Manage Jobs page looks like this:

If you need to cancel one or more jobs, you can select the job’s check box, and then click
Cancel on the Report Manager toolbar.

Disabling a Shared Data Source

Sometimes, you might want to temporarily prevent reports from executing altogether. You
might need to suspend jobs while performing maintenance on a source database or when
troubleshooting data issues. Any reports that had been assigned to the disabled shared data
source can’t execute until the shared data source is enabled or a new data source is assigned.

6-2250-7.book Page 321 Tuesday, March 21, 2006 3:45 PM

322 Part III: Managing the Report Server

Subscriptions using a disabled shared data source are also prevented from executing. Dis-
abling a shared data source is an easy way to temporarily suspend many reports with one step.
You should consider using shared data sources whenever possible so you can take advantage
of this feature, because you can’t disable custom data sources.

In this procedure, you’ll suspend the rs2005sbsDW shared data source in the Execution Log
Reports subfolder.

Suspend jobs by disabling a shared data source

1. In Report Manager, open the rs2005sbsDW shared data source in the Execution Log
Reports subfolder of the Example Reports folder.

2. Click the Dependent Items tab.

Your screen looks like this:

A list of reports that are associated with the current shared data source is always avail-
able. This feature gives you the opportunity to assess the impact of disabling the shared
data source. Notice also the Subscriptions tab, which serves the same purpose for sub-
scriptions dependent on the current shared data source.

3. Click the Properties tab.

4. Clear the Enable This Data Source check box.

6-2250-7.book Page 322 Tuesday, March 21, 2006 3:45 PM

Chapter 11: Managing Server Components 323

Your screen looks like this:

5. Click Apply.

Now any reports or subscriptions that use this shared data source will be suspended.

6. Click the Execution Log Reports link, and then click the Product Profitability Filter
report link.

Your screen looks like this:

6-2250-7.book Page 323 Tuesday, March 21, 2006 3:45 PM

324 Part III: Managing the Report Server

If a user attempts to execute an on-demand report that uses a disabled shared data source,
an error message is displayed. However, a snapshot of the report can still be viewed.

Pausing a Shared Schedule
You can also pause a shared schedule to temporarily suspend jobs. In Chapter 9, “Man-
aging Content,” you learned how to create a shared schedule by accessing the Shared
Schedules page from the Site Settings page. You were also introduced to the Report Man-
ager toolbar buttons that allow you to pause or resume a schedule. By pausing a sched-
ule, you suspend related jobs, such as report executions and subscriptions. However,
there is no list of reports or subscriptions provided for you to examine before pausing
the schedule. Also, as with disabling a shared data source, pausing a shared schedule is
an easy way to temporarily suspend many reports with one step, which isn’t possible
when using a custom schedule.

Administering Reporting Services Databases
You learned about the .ReportServer and the ReportServerTempDB databases while learning
how to deploy reports and manage report execution. Now it’s time to take a closer look at
these databases from an administrative perspective. To manage these databases, you need to
understand the factors that affect their size so you can manage your disk space resources
appropriately. You also need to implement an appropriate disaster recovery strategy for these
databases.

You use standard SQL Server tools to monitor the size of the tables in the ReportServer and
ReportServerTempDB databases. You will need to understand how Reporting Services imple-
mentation decisions can increase or decrease their space requirements. To protect the data
from disaster, you can use SQL Server backup utilities. However, because some information in
the ReportServer database is encrypted, you’ll also need to use the Reporting Services
rskeymgmt utility to back up the encryption key.

Monitoring Database Storage Consumption

Reporting Services uses the ReportServer database as its primary storage component not only
for reports, but also for configuration information, security assignments, and schedules. As
such, Reporting Services cannot operate without the ReportServer database. The Report-
ServerTempDB database is also a storage component, but only for temporary data, such as ses-
sion and caching information. The following table compares the contents of each database:

ReportServer ReportServerTempDB

Folders, reports, resources User session information

Shared data sources Session caching

Snapshots and report history Cached instances

6-2250-7.book Page 324 Tuesday, March 21, 2006 3:45 PM

Chapter 11: Managing Server Components 325

Most tables in either database don’t consume much space, with the exception of the Chunk-
Data table. In the ReportServer database, the ChunkData table contains snapshots and report
history. Because snapshots and report history are stored in the intermediate format of a
report, they also include all the report data, and consequently, consume a higher percentage
of disk space than other tables in the database. The ChunkData table in the ReportServer-
TempDB database contains the session cache and the cached instances, which also store
reports in an intermediate format with data, so it, too, requires a large amount of disk space
relative to other tables.

Check the ChunkData table size

1. Open Microsoft SQL Server Management Studio and connect to the Database Engine.

2. Expand the Databases folder, and then click ReportServer.

3. On the Summary tab, click the drop-down list arrow next to Report.

4. Choose Disk Usage Report.

5. Expand the Disk Space Used By Tables section.

Your screen looks similar to this:

Security

Schedules

Subscriptions and notifications

Configuration

Execution Log

ReportServer ReportServerTempDB

6-2250-7.book Page 325 Tuesday, March 21, 2006 3:45 PM

326 Part III: Managing the Report Server

6. Scroll through the list to find the ChunkData table.

As you add snapshots and report history, this table will continue to grow much faster
than the other tables in this database. You can use this report to monitor its size. If it
starts getting too large (which really depends on your specific environment), you might
want to work with users to determine which snapshots are appropriate to take or how
much report history is really needed.

Evaluating Disk Space Requirements
Because so many variables contribute to disk space consumption, there’s no specific for-
mula you can use to estimate disk space. However, the following list provides some gen-
eral areas you can review when evaluating the impact of implementation decisions on
server disk space:

■ Total number of reports

■ Total number of snapshots

■ Total number of snapshots saved in report history

■ Total size of intermediate reports (which include report data) in snapshots and
report history

■ Total number of cached instances resulting from different combinations of report
parameters

■ Total number of users affecting session cache

■ Session cache time-out length

Implementing a Backup and Restore Strategy

You can take advantage of the backup and restore utilities provided with SQL Server 2005 as
part of your disaster recovery plan. Backing up your ReportServer database, as well as the mas-
ter and mdb databases, on a regular basis is critical because together they contain everything
that Reporting Services needs to function. (The master database contains user accounts and
msdb contains the scheduled jobs.) However, you really only need to back up the Report-
ServerTempDB database one time so you have something to restore in the event of disaster.
As users browse reports, data will cache as needed—either as a session cache or as a cached
instance.

If you need to restore the ReportServer database, you’ll also need to restore the key that is
used to store the encrypted data in that database. For example, if you migrate the Report-
Server database to a new SQL Server instance, you will also need to migrate the encryption
key. As you learned earlier in this chapter, Reporting Services uses encryption for several pur-
poses—storing the connection string and credentials used to connect to the Reporting Services

6-2250-7.book Page 326 Tuesday, March 21, 2006 3:45 PM

Chapter 11: Managing Server Components 327

databases, storing the credentials to use for running unattended reports, and storing creden-
tials for selected data sources. To encrypt and decrypt this data, Reporting Services uses a
public key and a symmetric key that are created at installation. Migrating the ReportServer
database “breaks” the symmetric key such that Reporting Services is no longer able to decrypt
the connection strings or credentials. As a result, an unauthorized migration of the database is
foiled and the security of your Reporting Services implementation is protected.

Important Moving the ReportServer database is not the only event that modifies the sym-
metric key. The symmetric key is also affected by renaming the server or changing the service
account that runs the ReportServer Windows service.

To help you manage changes to the server infrastructure that affect the symmetric key,
Reporting Services includes the rskeymgmt utility. This utility allows you to back up this key.
After an event occurs which invalidates the symmetric key, you can use the rskeymgmt utility
to restore the original version of the symmetric key.

Use the following syntax on the Report Server to back up the encryption key:

rskeymgmt –e –f [drive:][folder\]filename –p password

The –e argument instructs the utility to extract the encryption key to the file identified with
the –f argument. If you want to save the symmetric key to a different drive or foler, be sure to
provide the driver letter and folder name with the file name, such as D:\MyFolder\RSKey, for
example.The –p is a password that is used to scramble the symmetric key and is required if
you later need to restore it. After you store the symmetric key in an external file, you can move
it to a secure location. To restore the symmetric key, use the following syntax:

rskeymgmt –a –f [drive:][folder\]filename –p password

After restoring the key, you must restart Internet Information Services (IIS) for the change to
take effect.

Important When using the rskeymgmt utility, you need to have local system administrator
privileges on the server. This utility must be run locally on the server.

If, for some reason, you don’t have access to the backup of the encryption key (or forget the
password), and the ReportServer database becomes disabled due to a problem with the sym-
metric key, you can also use the rskeymgmt utility to delete the encrypted data in the Report-
Server database. In this case, just use rskeymgmt –d and then restart IIS. Then, you can use the
rsconfig utility to specify the connection information to be encrypted. You may then use the
rskeymgmt utility to create a new backup of the encryption key. (You can learn more about the
rskeymgmt utility in SQL Server Books Online.)

6-2250-7.book Page 327 Tuesday, March 21, 2006 3:45 PM

328 Part III: Managing the Report Server

If you delete the encrypted data in the ReportServer database and had previously configured
credentials for unattended report processing, you will need to run the rsconfig utility again to
add these credentials back to the Report Server configuration file (as explained earlier in this
chapter). For each report and shared data source that uses stored credentials, you’ll need to
update the credentials individually, since this data is wiped out when you use the –d argument
with the rskeymgmt utility. You will also need to open and save each subscription, since they
are also affected by the deletion of encrypted credentials. This is a lot of work to do if you have
a lot of items using stored credentials or subscriptions, so take care to back up the symmetric
key!

In this procedure, you’ll use the rskeymgmt utility to back up the symmetric key.

Back up the symmetric key

1. On the Start menu, click Run, type cmd, and then click OK to open a Command Prompt
window.

2. Run the rskeymgmt utility by typing the following: rskeymgmt –e –f RSkey –p <Your-
Password> (replacing <YourPassword> with a password of your choosing).

Important This password is used to encrypt the key in the extracted file. You will
need this password if you need to reapply the key to a Reporting Services instance.

3. Type Y to confirm that you want to extract the key, and then press Enter.

When the file is created, the screen looks like this:

Now, you can move the RSKey file to a secure location in your environment.

Chapter 11 Quick Reference

To Do this

Edit a configuration file After reviewing valid values for modifiable configuration settings in SQL
Server Books Online, open the applicable configuration file with any XML
editor and edit the file. You can edit the following files:

RSReportServer.config

RSWebApplication.config

ReportingServicesService.exe.config

RSReportDesigner.config

6-2250-7.book Page 328 Tuesday, March 21, 2006 3:45 PM

Chapter 11: Managing Server Components 329

Change connection
information for the
Report Server database

Use the rsconfig utility at the command line using the following syntax:

rsconfig –c –m computername –s SQLServername –d

ReportServerDatabaseName –a windows|sql –u [domain\]username –p

password

Encrypt credentials for unat-
tended reports

Use the rsconfig utility at the command line using the following syntax:

rsconfig –e –u [domain\]username –p password

Change tracing levels on the
Report Server

Edit the ReportingServicesService.exe.config file using any XML editor and
change the value for the configuration setting DefaultTraceSwitch. Valid in-
teger values are 0 to disable tracing or 1 through 4 to enable tracing with
successively greater detail.

Create an execution logging
database

Create an execution logging database in Microsoft SQL Server Management
Studio, and then run the createtables.sql script.

Load the execution logging
database with current data

Execute the SQL Server 2005 Integration Services (SSIS) package
RSExecutionLog_Update.dtsx and schedule for periodic execution to keep
the execution logging database relatively current.

Analyze data in the execution
logging database

Use the Report Designer in Visual Studio to create your own reports or de-
ploy the sample reports in the ExecutionLog solution in the C:\Documents
and Settings\<username>\My Doucments\Microsoft Press\rs2005sbs
\chap11\ExecutionLog folder.

Apply a time-out to a source
query

In Visual Studio, click the Data tab of a report, click the dataset containing
the source query in the Dataset drop-down list, and then click Edit Selected
Dataset. Enter the time-out value in seconds in the Timeout box.

Apply a time-out to report
execution

For a global time-out, click the Site Settings link in Report Manager. Select
Limit Report Execution To The Following Number Of Seconds and enter a
time-out value in seconds.

or

For a report time-out, open the report, click the Properties tab, and then
click the Execution link. Select Limit Report Execution To The Following
Number Of Seconds and enter a time-out value in seconds.

Cancel a job In Report Manager, click the Site Settings link, and then click the Manage
Jobs link. Select the job’s check box, and then click Cancel.

Disable a shared data source In Report Manager, open the shared data source, and then clear the Enable
This Data Source check box.

Monitor the ChunkData table
size

In Microsoft SQL Server Management Studio, expand the Databases folder,
click ReportServer, run the Disk Usage Report on the Summary tab, and ex-
pand the Disk Space Used By Tables section.

Back up the encryption key Use the rskeymgmt utility at the command line using the following syntax:

rskeymgmt –e –f [drive:][folder\]filename –p password

To Do this

6-2250-7.book Page 329 Tuesday, March 21, 2006 3:45 PM

6-2250-7.book Page 330 Tuesday, March 21, 2006 3:45 PM

Part IV
Delivering Reports

In this part:

Chapter 12: Accessing Reports .333

Chapter 13: Rendering Reports .355

Chapter 14: Managing Subscriptions .375

Chapter 15: Creating Reports with Report Builder.405

You learned a great deal about the first two stages of the reporting life cycle in Part II,
“Authoring Reports,” and Part III, “Managing the Report Server.” The third and final stage of
the reporting life cycle includes accessing and delivering reports, which is covered in the
four chapters of Part IV. You’ll learn how features of Report Manager help you view and
save reports, how report design affects report rendering, and how subscriptions to deliver
reports are created and managed. In Part V, “Programming Reporting Services,” you’ll
explore ways to build custom scripts and applications to automate each stage of the
reporting life cycle.

6-2250-7.book Page 331 Tuesday, March 21, 2006 3:45 PM

6-2250-7.book Page 332 Tuesday, March 21, 2006 3:45 PM

333

Chapter 12

Accessing Reports

After completing this chapter, you will be able to:

■ Use Report Manager’s navigation features to locate and view reports.

■ Add content to the My Reports folder.

■ Save a report.

■ Print a report.

This chapter begins by teaching you how to retrieve reports from the Report Server. You learn
the available options for locating reports on the server, exploring the contents of a report
online, and changing the size of the report in your browser. The latter half of this chapter
shows you how to preserve the report and its data on the Report Server, on your computer as
a local file, or as a printed report.

Finding and Viewing Reports
Using Report Manager to open and view a report has already been introduced in earlier chap-
ters of this book, but there are a few more activities to learn that are related to finding and
viewing reports. As you already know, you can use folder links to reach a report when you
know the location. When you aren’t sure where a report is found, you can search all or part of
the Report Server to find it.

After you open a report, the report remains available “as is” in your browser so you can
return later to the same view of the report for as long as your browser session is active, even
if the report definition or the underlying data changes. However, the HTML Viewer in
which Report Manager displays your report provides you with the option of reloading the
report to get the most current report definition and to update the data. This option to
refresh a report is one of several features of the HTML Viewer you can use while working
with your report online.

To view a report using Report Manager, you simply click the report link on a folder’s Contents
page. The trick is knowing which folder contains the report that you’re looking for. You can
use Report Manager’s folder links to move deeper into a folder hierarchy or use navigation
links to move in the opposite direction until you find the desired report. When you have a lot
of folders to traverse using this method, finding a report can become a tedious process. You
can eliminate this hassle by using Report Manager’s search feature. You don’t even need to

6-2250-7.book Page 333 Tuesday, March 21, 2006 3:45 PM

334 Part IV: Delivering Reports

know the report’s complete name to search for it—just enter a string of characters to find
reports that contain that same string in either the report name or its description.

If you return to a report you viewed earlier in the same browser session, you’ll be viewing the
version of the report retrieved from the session cache. The report is retained in the session
cache for the duration of the browser session. If you suspect that a report definition or the
source data has changed during your current session, you can force Report Manager to reload
the report definition from the Report Server and to execute the report query. To do so, you use
the Refresh button on the report toolbar in the HTML Viewer. The report toolbar contains sev-
eral other features that allow you to interact more effectively with a report. For example, you
can resize the report to better fit your browser window, or you can search the contents of a
report for a specific string (which is different from the search feature in Report Manager
described earlier). Finally, if you want easy access to a report that uses default parameter val-
ues that are different from those defined by the Content Manager, you can—if you have the
right permissions and the feature is enabled—create a personal linked report to store in your
private workspace, the My Reports folder.

Navigating the Folder Hierarchy

You can review the contents of the Report Server by browsing the folder hierarchy. Folders can
be created by the report author if the report is deployed using the Report Designer (as you
learned in Chapter 9, “Managing Content”); by a Content Manager if reports and resources
need to be relocated after deployment (as you also learned in Chapter 9); or by a script or
application (as you’ll learn in Chapter 17, “Programming Report Server Management”) for
automated content management. The folder hierarchy works much like the arrangement of
folders you use to navigate the Microsoft Windows file system, in which folders can contain
items or other folders that also contain items or additional folders. However, in Report Man-
ager, the hierarchy is not represented as a tree view, but rather as separate pages. You can see
only those folders and items for which you have the appropriate permissions (as explained in
Chapter 10, “Managing Security”).

To open a folder, you click the folder link in the Contents page. The path to the current folder
is displayed at the end of a series of navigation links in the top-left corner of the browser win-
dow, beginning with the Home folder and continuing with each nested folder. You can
quickly jump to a higher-level folder using these links.

In this procedure, you’ll explore the Adventure Works Chapter 12 folder hierarchy in Report
Manager.

Use navigation links

1. Run publishChap12.cmd in the C:\Documents and Settings\<username>\My
Documents\Microsoft Press\rs2005sbs\chap12 folder to create the folders and
publish the reports that you need to follow the procedures in this chapter.

2. Open Report Manager in Internet Explorer at http://localhost/Reports.

6-2250-7.book Page 334 Tuesday, March 21, 2006 3:45 PM

Chapter 12: Accessing Reports 335

3. Click the Adventure Works Chapter 12 folder link to display its contents, as shown here:

This folder contains three reports and two folder links. Notice the link for the Home
folder in the top-left corner of the window. Whenever you browse folders and open
items, the folder links always appear in this location to identify your current location in
the folder hierarchy and to help you quickly return to a folder at a higher level.

The Home link in the top-right corner of the browser window also takes you to the
Home folder, and is always available whether you are browsing the folder hierarchy or
managing server settings, which are accessed independently of the folder hierarchy.

4. Click the Reseller Sales folder link, and then click the Reseller Sales report link.

The navigation links at the top of the screen look like this:

The complete series of links shows the path to the current report, beginning from the
Home page. Rather than use the Back button in your browser, you can quickly jump to
another folder in this path by using the navigation link.

5. Click the Adventure Works Chapter 12 navigation link.

With one click, you have moved to a folder two levels above the report you were viewing.

6. Leave the Report Manager open for the next procedure.

6-2250-7.book Page 335 Tuesday, March 21, 2006 3:45 PM

336 Part IV: Delivering Reports

Refreshing Reports

You can also use the Back button to return to folders or reports that you have previously
opened. Whereas the Contents page of a folder will display new contents that were added
since you previously viewed the page, an on-demand report will not reflect any changes made
to the report after you initially opened it—as long as you’re still using the same browser session.

As you learned in Chapter 11, “Managing Server Components,” the ReportServerTempDB
stores the session cache version of the report to speed up delivery of the same report during
a single browser session. If you suspect that the report definition or source data has changed
during your session, you can use the Refresh button to force a cached report to be reloaded
from the ReportServer database and a new query to be executed against the source database.

In this procedure, you’ll use the Refresh button to load a revised report definition into the ses-
sion cache.

Replace the session cache

1. Run updateResellerSales.cmd in the C:\Documents and Settings\<username>\My
Documents\Microsoft Press\rs2005sbs\chap12 folder to publish a revised version
of the Reseller Sales report.

This batch command file will publish a revised report definition of the Reseller Sales
report and overwrite the existing report definition.

2. In Report Manager, use the Back button to return to the Reseller Sales Report.

A portion of the report is shown here:

Even though a new version of the Reseller Sales report has been stored on the Report
Server, the version of the report in the session cache is displayed. Notice in this version
of the report that the group header row, which currently displays United States,
includes no other data.

3. Click Refresh on the Report Manager toolbar.

6-2250-7.book Page 336 Tuesday, March 21, 2006 3:45 PM

Chapter 12: Accessing Reports 337

Note If you use the browser’s Refresh button, or if you press Ctrl+F5, the report is
reloaded from the cache without the report definition.

The top of the report looks like this:

The report is reloaded from the Report Server and the query is executed again. In this
case, the source data hasn’t changed, but the report definition has been updated to
include subtotals in the group header row to the right of United States.

Searching for Reports

If you aren’t sure where to begin looking for a report, you can use the Search feature in
Report Manager to find a report by name or by description. In fact, you can also use this fea-
ture to search for folders, shared data sources, and resources. However, you can’t search for
a specific snapshot in report history or a subscription, nor can you search for schedules or
role assignments.

To search, you type in a search string using all or part of the folder or item name (or its
description) in the Search For box in the top-right corner of Report Manager. Reporting
Services will begin the search in the current folder and will continue through all the nested
folders below the current location. Report Manager won’t search a folder or return an item
for which you don’t have permissions.

In this procedure, you’ll search for reports that include “product sales” in the report name or
description.

6-2250-7.book Page 337 Tuesday, March 21, 2006 3:45 PM

338 Part IV: Delivering Reports

Search for reports using a partial name

1. Click the Home link to return to the Home page.

2. By searching from the Home page, all folders to which you have permission will be
searched.

3. Type product sales in the Search For box, as shown here:

4. Click Go.

The Search page looks similar to this:

Depending on the reports you have on your server, the list of reports might be different
from those shown in the illustration.

5. Click Show Details.

6-2250-7.book Page 338 Tuesday, March 21, 2006 3:45 PM

Chapter 12: Accessing Reports 339

Your screen looks like this:

Now you can see not only the reports that met the search criteria, but also in which
folder each report is stored. If the report is a snapshot, you will also see the last execu-
tion date in the When Run column. You can click on a folder link to navigate to the Con-
tents page of that folder, or you can click on a report link to view the report.

6. Click the Employee Product Sales report link (in the Adventure Works Chapter 12/
Territory Sales folder) to view the report, and then leave this report open for the next
procedure.

Using the HTML Viewer

The HTML Viewer is supplied by Reporting Services to view reports online in HTML format.
Above the report is a parameters section (if report parameters are used and the prompt is
enabled) and a report toolbar. The report toolbar has useful features that allow you to explore
your report more easily as well as change your viewing options.

In the parameters section of the HTML Viewer, you change the value either by selecting a
value from the parameter drop-down list or by entering a new value. The report will render
with the new value only after you click View Report. (Whether the report requeries the data
source before rendering depends on how each parameter is configured, as discussed in Chap-
ter 7, “Building Advanced Reports.”)

6-2250-7.book Page 339 Tuesday, March 21, 2006 3:45 PM

340 Part IV: Delivering Reports

Beneath the parameters section in the HTML Viewer is the report toolbar, which looks like
this:

The following table describes how to use the features of the report toolbar.

In this procedure, you’ll explore some of the features of the report toolbar.

To Do this

Jump to the beginning or end of a
report

Click the First Page or Last Page button.

Scroll the previous or next page Click the Previous Page or Next Page button.

Jump to a specific page Type a page number in the Current Page box, and then
press Enter.

Change the size of the report page Select a percentage in the size drop-down list. You can
also select Page Width if you want the report resized to
fit the horizontal width of your browser, or select Whole
Page if you want the report resized to fit vertically within
your browser.

Search for the first occurrence of text
on any page of a report

Type the search string in the Find Text box, and then click
Find. This is available only when you enter a search string.

Search for the next occurrence of text
within a report

Click Next. As with Find, this is not available until you en-
ter a search string and click Find once.

View the report in a different format Click the desired format in the format drop-down list,
and then click Export.

Reload the report from the ReportServer
database

Click Refresh.

Toggle the display of the report
parameters

Click Show / Hide Parameters.

Toggle the display mode of the report Click Full Screen to view the report in the full screen
mode and click Restore Down to return to the default dis-
play mode.

Page
Number

FormatLast
Page

Size Refresh
Report

Search

Show / Hide
Parameters

First Page

Previous Page

Next Page Parameters

6-2250-7.book Page 340 Tuesday, March 21, 2006 3:45 PM

Chapter 12: Accessing Reports 341

Use the report toolbar

1. If you skipped the previous procedure, open Report Manager and open the Employee
Product Sales report open, located the folder path Adventure Works Chapter 12/Terri-
tory Sales. Click Full Screen on the report toolbar.

The screen looks like this:

More space in the browser is dedicated to the report, but it still doesn’t quite fit the
screen.

2. Click Show / Hide Parameters.

Even more space is allocated to the report. You can also adjust the size of the report to
view more data in the browser at a time.

3. Select 75% in the size drop-down list.

Now, you can see more months of the year in the browser. The exact number that you
see will depend on your screen resolution.

4. Click Next Page to view the second page of the report.

6-2250-7.book Page 341 Tuesday, March 21, 2006 3:45 PM

342 Part IV: Delivering Reports

5. Click Restore Down to restore the Report Manager interface, as shown here:

6. Keep the report open for the next procedure.

Using My Reports

If the My Reports feature is enabled on the Report Server, the My Reports folder appears on
the Home page. With this feature enabled, each user has his or her own My Reports folder as
a personal workspace to which no one else has access, except for report administrators. As
you learned in Chapter 10, there is a default role definition for My Reports, which a report
administrator can use to limit the tasks that users can perform in this workspace. If you have
permissions to create a linked report from an existing report, you can create a personal linked
report to access in your My Reports folder, and then you can set your own default parameter
values.

You can also upload a report definition or resource file for storage in My Reports or, if you’re
a report author, you can create and publish a report to My Reports using Report Designer—
assuming, of course, that you have the appropriate permissions. If you publish a report from
Report Designer, set the project deployment folder to Users Folders/computername username
/My Reports.

In this procedure, you’ll create a personal linked report from the Employee Product Sales
report.

6-2250-7.book Page 342 Tuesday, March 21, 2006 3:45 PM

Chapter 12: Accessing Reports 343

Create a personal linked report

1. If My Reports isn’t already enabled, click the Site Settings link in Report Manager, click
Enable My Reports To Support User-Owned Folders For Publishing And Running Per-
sonalized Reports, and then click Apply.

2. If you accessed the Site Settings using the same browser session you used in the previ-
ous procedure, click Back twice to return to the Employee Product Sales report.

3. Click the Properties tab, and then, if the General Properties page isn’t currently dis-
played, click the General link.

4. Click Create Linked Report.

5. Type a name for the report: My Employee Product Sales.

Your screen looks like this:

6. Click Change Location.

6-2250-7.book Page 343 Tuesday, March 21, 2006 3:45 PM

344 Part IV: Delivering Reports

The screen looks similar to this:

If you did not complete all the procedures in the preceding chapters, you will see fewer
folders in the location tree.

7. Click My Reports.

Notice the folder path that appears in the Location box: /My Reports.

8. Click OK to confirm the My Reports location, and then click OK again to create the per-
sonal linked report.

6-2250-7.book Page 344 Tuesday, March 21, 2006 3:45 PM

Chapter 12: Accessing Reports 345

The screen looks similar to this:

Notice the navigation links in the top-left corner of the browser window that now indi-
cate your current location in the My Reports folder.

9. Click the Properties tab, and then click the Parameters link.

10. Change the Default Value for the Group parameter to Europe.

The Parameters Properties page looks like this:

6-2250-7.book Page 345 Tuesday, March 21, 2006 3:45 PM

346 Part IV: Delivering Reports

11. Click Apply.

12. Click the Home link.

Notice the folder on the Home page: My Reports. This is a new folder if you enabled My
Reports in this procedure, but it might not be labeled as new. If you’re a report adminis-
trator, you’ll also see a folder titled Users Folders, in which you will be able to open each
user’s My Reports folder to review content placed there.

13. Click the My Reports folder link, and then click the My Employee Product Sales report
link.

The top of the report looks like this:

The advantage of creating a personal linked report is the ability to set the default values
of each parameter that presents the data the way you want to see it when you open the
report. If the base report gets deleted, however, your personal linked report will no
longer operate. You will then need to manually delete the report from the My Reports
folder.

Saving Reports for Future Reference
Whether a report runs on demand or on a scheduled basis, the information in the report is
generally dynamic. That is, when the source data is refreshed periodically, the report eventu-
ally reflects changes in the data. If you want to have a permanent record of the data at a certain
point in time, you’ll need to save the report. To store the report and its data on the Report
Server, you can create a report snapshot. You also have the option to store the report as a file

6-2250-7.book Page 346 Tuesday, March 21, 2006 3:45 PM

Chapter 12: Accessing Reports 347

on your computer or on a network share. Alternatively, you can create a printed copy of the
report for your personal use or for distribution across the organization.

Basically, there are two ways to make a permanent copy of a report. One way is to keep the
report copy as a snapshot in report history, which requires you to have access to the Report
Server whenever you want to view this copy of the report. Another way is to export the report
to another format, which can then be printed or saved to a local file. If you export the report
to a file, you can view the file even when you can’t connect to the Report Server. Of course, if
you save the file to a network share, you need to be able to navigate the network’s file system
to open the report. Further, your computer must have the appropriate software installed
before you can view the file. For example, if you export a report as an Microsoft Excel file, you
must have Microsoft Office XP or a later version installed on your computer to view the file
contents.

Creating a Report History Snapshot

In Chapter 9, you learned how a report administrator can enable a report’s history proper-
ties so snapshots can be saved for reference at some point in the future. Commonly, a sched-
ule is used to put a snapshot into report history on a regular basis. For example, you might
have a schedule to place a snapshot of financial statements into report history at the end of
each month. However, there may be occasions when users want to manually add a snapshot
to report history as well. Just as with scheduled snapshots, the report must be configured to
use a data source with stored credentials before anyone can add a snapshot to report history
manually.

In this procedure, you’ll use the New Snapshot button to add a snapshot to the report history
of the Employee Product Sales report.

Create a manual snapshot for report history

1. In Report Manager, click the Home link, click the Adventure Works Chapter 12 folder
link, click the Territory Sales folder link, and then click the Employee Product Sales
report.

2. Click the Properties tab, and then click the Data Sources link.

3. Click Credentials Stored Securely In The Report Server, and then type user name
ReportExecution and password ReportExecution.

You can create a snapshot only when the data source uses stored credentials.

4. Click Apply.

5. Click the History tab, and then click New Snapshot.

6-2250-7.book Page 347 Tuesday, March 21, 2006 3:45 PM

348 Part IV: Delivering Reports

The screen looks similar to this:

The snapshot will remain in report history until the limit of snapshots defined globally
or specifically for this report is exceeded. If no limit is defined, the snapshot will remain
in report history until it’s manually deleted using Delete on this page.

6. Click the snapshot link.

A new browser window is opened with a snapshot that looks similar to this:

6-2250-7.book Page 348 Tuesday, March 21, 2006 3:45 PM

Chapter 12: Accessing Reports 349

As with a snapshot that replaces an on-demand report, you can’t change the report
parameter values in a snapshot placed in report history. The snapshot is created using
the default parameter values.

7. Close the snapshot’s browser window.

Saving Reports to Local Files

You can save a report to a local file and thereby create the equivalent of a snapshot. By saving
to a local file, you can access the report anytime without connecting to the Report Server. To
create a local file, you use the Export feature in the HTML Viewer. The best formats to use for
saving a report as a local file are Excel, Web archive, Acrobat Portable Document Format
(PDF), and TIFF. You’ll explore these and other rendering formats in greater detail in Chapter
13, “Rendering Reports.”

The export format you choose determines which features of the online report can be repro-
duced. For example, a document map is a feature that enhances navigation in a very large
report that you view using the HTML Viewer. The document map can also be rendered in a
PDF file to facilitate navigation when viewing the report with Acrobat Reader. You’ll learn
more about the effect of rendering on specific report features in Chapter 13.

In this procedure, you’ll save the Product Catalog report as a PDF file.

Save a report as a PDF file

1. In Report Manager, click the Adventure Works Chapter 12 navigation link, and then
click the Product Catalog report.

Your screen looks like this:

6-2250-7.book Page 349 Tuesday, March 21, 2006 3:45 PM

350 Part IV: Delivering Reports

Notice the Document Map pane that appears on the left portion of the page. The Docu-
ment Map is a feature added during the report-authoring stage and is used to jump to a
corresponding location in the report. You’ll learn more about creating a Document Map
in Chapter 13.

2. Expand the Bike item, expand Road Bike, and then click Road-150.

The information in the Product Catalog related to the Road-150 bike is displayed. As
you can see, a document map is very useful for navigating a large report like the Prod-
uct Catalog.

3. Select Acrobat (PDF) File in the Export drop-down list, and then click Export.

You have the option to view the exported file now or to save the report to the file system
for viewing later. To view a file that is exported to another format, you must have the
appropriate application installed on your computer. In this case, you must have Acrobat
Reader.

4. Click Open to download the file and launch Acrobat Reader as the file viewer.

5. Click the Bookmarks tab.

The screen looks similar to this:

The document map is converted to bookmarks in the PDF file.

6. Collapse the Accessory category, and then click Road-150.

6-2250-7.book Page 350 Tuesday, March 21, 2006 3:45 PM

Chapter 12: Accessing Reports 351

The screen looks similar to this:

Note The bicycle image in the PDF file is unclear at the current resolution. When
viewed at 100 percent, however, the image is quite clear.

Now you have a file that you can share with others who don’t have access to the Report
Server. As an added bonus, the PDF file contains the navigation functionality that was
built into the original report to facilitate finding items of interest in a large report.

7. Close the PDF file.

Printing Reports

Report Manager includes a Print button on the report toolbar in the HTML Viewer. After a
report has completed rendering in the viewer, you can click this button, select a printer, and
specify printing options, such as margins or specific pages to print. The first time that you try
to use the print feature, you’ll be prompted to download an ActiveX control.

In this procedure, you’ll use the Print button to preview the print version of the Sales Sum-
mary report.

6-2250-7.book Page 351 Tuesday, March 21, 2006 3:45 PM

352 Part IV: Delivering Reports

Preview the print version of a report

1. In Report Manager, click the Adventure Works Chapter 12 navigation link, click the Ter-
ritory Sales folder link, and then click the Sales Summary report.

2. Click Print on the HTML Viewer toolbar.

3. Click Preview.

The screen looks similar to this:

Scroll through the report to verify that all four pages of the report display as separate
pages for printing. If you tried to use the browser’s print feature, you could only print
one page at a time and the printed version of the report would include the Web elements
of the Report Manager application.

4. Click Close, click Cancel, and then close all browser windows.

6-2250-7.book Page 352 Tuesday, March 21, 2006 3:45 PM

Chapter 12: Accessing Reports 353

Chapter 12 Quick Reference

To Do this

Navigate a folder hierarchy In Report Manager, use the folder links in the Contents page to move
to successively lower levels of the hierarchy; use the navigation links
at the top of the page to move to higher levels of the hierarchy.

Replace the session cache with the
current report definition and/or
current data

In Report Manager, open a report that was opened earlier in the
same browser session, and then click Refresh on the report toolbar
(not the browser toolbar).

Search for folders or items In the Search For box in the top-right corner of Report Manager, type
the full or partial report name or description, and then click Go.

Create a personal linked report With My Reports enabled in Site Settings, open the General Proper-
ties page of a report, and then click Create Linked Report. Assign the
report to the My Reports location. Use the Parameters Properties
page of the linked report to change the default values as desired.

Add a manual snapshot to report
history

Ensure the report uses a data source with stored credentials, and
then click the History tab of the report and click New Snapshot.

Save a report as a local file With the report open in Report Manager, click a format in the Export
drop-down list, and then click Export. Click Save, select a download
location for the file, and type a name.

Print a report With the report open in Report Manager, click Print on the HTML
Viewer toolbar, select a printer, and change print options.

6-2250-7.book Page 353 Tuesday, March 21, 2006 3:45 PM

6-2250-7.book Page 354 Tuesday, March 21, 2006 3:45 PM

355

Chapter 13

Rendering Reports

After completing this chapter, you will be able to:

■ Render a report as a Web document for sharing.

■ Convert a report to a page-oriented format for document storage or printing.

■ Save a report as a Microsoft Excel workbook for offline analysis.

■ Create a structured file for data exchange from a report.

In the previous chapter, you learned how to use the features of Report Manager to locate and
view reports. You were also introduced to the Export feature to render reports so that you
could save or print a report. In this chapter, you take a closer look at the rendering options.
You compare and contrast the rendering formats by exporting reports that contain specific
design features. This evaluation of the differences between rendering formats will help you
improve the design of your reports by enabling you to make informed choices about available
options.

Comparing Rendering Formats
Rendering is the process of converting the report definition and the report data into a specific
output format. Report Manager renders reports as HTML documents by default and provides
seven alternative rendering formats from which you can choose. Each of these formats will be
reviewed in this chapter. You can also add a custom rendering extension to expand the list of
available formats in Report Manager, or you can build a custom application to programmati-
cally render reports as desired, which you will learn about in Chapter 18, “Building Custom
Reporting Tools.” Because rendering is implemented as an extension, it’s possible that other
rendering extensions might be added in the future (either by Microsoft or by third-party ven-
dors) or that the behavior of existing extensions will change (with service packs).

The HTML rendering format is best for viewing reports online and might include interactive
features. Other rendering formats, such as Adobe Acrobat Portable Document Format (PDF)
files or TIFF files, are ideal for distributing large, page-oriented reports that can be sent to a
printer or viewed using an appropriate client application. Reporting Services also supplies for-
mats that are useful for sharing the data in a report. One way to share data is to export a report
to an Excel format so that users can perform more sophisticated interactive analysis of the
data. You can also share data using comma separated values (CSV) or XML formats. For exam-
ple, you might need to supply invoicing data to customers in a structured format that their
internal applications can use as input.

6-2250-7.book Page 355 Tuesday, March 21, 2006 3:45 PM

356 Part IV: Delivering Reports

Although all the rendering formats support any of the data regions that you can use in a report
definition, you will find that some data regions are more compatible with certain formats than
with others. The compatibility between data regions and rendering formats will be discussed
in more detail later in this chapter. You will also find that some design features are not sup-
ported by all formats. Be sure to test a new report in each rendering format to avoid surprises.

Rendering for Online Viewing
In a typical implementation of Reporting Services, users view reports online using Report
Manager. A report is rendered as HTML 4.0 if the browser that is used to open Report Man-
ager is Internet Explorer version 5.5 or 6. Otherwise, the report is rendered as HTML 3.2.
Reporting Services can also render reports online as Multipurpose Internet Mail Extensions
(MIME) Encapsulated Aggregate HTML (MHTML). If you have a multipage report that you
want to embed in an e-mail message, you can export your report as MHTML.

Rendering as MHTML

If you want to save or share a report as a Web page, you can use the MHTML format to com-
bine all report items into a single file, even if the report uses a subreport or other external
resources, such as images stored separately on the Report Server. The MHTML format can
also be used with any data region. This format is best used to combine multiple pages in a
report. You can then easily e-mail the MHTML document to share with others.

The MHTML document does not have any interactive features. When you export a report to
this format, the current view of the report is rendered. This means that if your report uses
dynamic visibility, the items that are visible when you export the report will also be visible in
the MHTML version of the report.

In this procedure, you’ll export the Product Sales and Profitability Subreport, which includes
a subreport with dynamic visibility, as a single-page MHTML document.

Export a multiple page report as a Web Archive

1. In Visual Studio, open the Rendering solution in the C:\Documents and Settings
\<username>\My Documents\Microsoft Press\rs2005sbs\chap13 folder.

2. Right-click the solution in Solution Explorer, and then click Deploy. Leave Visual Studio
open for use in another procedure later in this chapter.

3. In Report Manager, click the Rendering link, and then click the Product Sales and Prof-
itability Subreport report link.

This report is designed with dynamic visibility. You can expand a product to view detail
information (in the form of a subreport, in this case) about that product.

6-2250-7.book Page 356 Tuesday, March 21, 2006 3:45 PM

Chapter 13: Rendering Reports 357

4. Click the Next Page button on the Report toolbar, and then expand Cable Lock to view
the subreport. Click 75% in the Size drop-down list to view the report, as shown here:

5. Select Web Archive in the Export drop-down list, click the Export link on the Report
toolbar, and then click Open in the File Download dialog box.

6. Scroll down the page to find the break between the first page and the second page of the
report, as shown here:

6-2250-7.book Page 357 Tuesday, March 21, 2006 3:45 PM

358 Part IV: Delivering Reports

Notice that all four pages of the original report are displayed in a single page in this
browser window. The page footer of the first page is immediately followed by the page
header of the second page. The subreport is displayed only on the second page below
the Cable Lock product.

Tip The MHTML format is great for creating a single Web page from a report, espe-
cially a report with multiple pages. However, as you can see from this example, it might
not be the best format for a report designed with dynamic visibility, unless you’re inter-
ested only in highlighting specific details in the report. Expanding each item in the
report before you export is not very practical.

7. Close the browser window.

Rendering for Document Management
One benefit of Reporting Services is its role as a central location for the online storage and
retrieval of information—which can be incorporated into a comprehensive corporate docu-
ment management strategy. Two common formats used for document management are PDF
files and TIFF files. Reporting Services can render any report into these page-oriented formats.

When you need to provide information to people who don’t have access to the reporting plat-
form, you can retrieve a report from Reporting Services and export it as a page-oriented file.
The page-oriented formats supported by Reporting Services are TIFF and PDF files. You can
export a report as a TIFF file for document archival or for integration with other applications.
The TIFF file is intended to be used independently of the reporting platform, so you don’t
need to be connected to the Report Server to view the file.

Similarly, you might want to use PDF documents offline. For example, you can create a PDF
document for a product catalog that sales representatives can keep on their laptops or send to
their clients as an e-mail attachment. When authoring a report that is likely to be exported as
a PDF document, you can include a document map to serve as an interactive table of contents
that allows the user to easily jump to another section of the document.

Rendering as a TIFF File

Reporting Services includes a rendering extension that allows you to generate a TIFF file from
a report if needed. All data regions are properly rendered using this format, but only visible
items will be displayed if dynamic visibility has been added to the report. Since a TIFF file is a
page-oriented format, you will want to carefully check the design of reports during the author-
ing stage for correct print layout. For example, you’ll want to make sure that you have properly
set the page size properties Width and Height, as well as the margin properties Left, Right, Top,
and Bottom. These properties belong to Report, which you can access in the report item list
box in the Properties window or by clicking outside the design grid in the Document window.

6-2250-7.book Page 358 Tuesday, March 21, 2006 3:45 PM

Chapter 13: Rendering Reports 359

Also, during the design process, preview the report frequently and use the Print Preview but-
ton to see how the report lays out on a printed page. The TIFF format does not support the
use of a document map because TIFF files are primarily used for document storage, printing,
or faxing.

In this procedure, you’ll correct the layout of the Product Sales and Profitability Chart for
printing and export the report as a TIFF file.

Export a report as a TIFF file

1. In Report Manager, click the Rendering link, and then click the Product Sales and Prof-
itability Chart report link. You might need to scroll down the page to see the top of the
matrix.

Your screen looks similar to this:

This report includes both a chart and a matrix. When rendered as HTML, the size of the
Web page expands horizontally and vertically to accommodate the contents. However,
the chart and the matrix won’t fit on a printed page if the report is designed incorrectly.

2. Select TIFF File in the Export drop-down list, click the Export link, and then click Open
in the File Download dialog box.

6-2250-7.book Page 359 Tuesday, March 21, 2006 3:45 PM

360 Part IV: Delivering Reports

Your default viewer for TIFF files might be different, but the resulting image looks
like this:

Notice that the report layout has portrait orientation. Although the chart fits well on the
page, the matrix is cut off and spreads out across the next three pages. The orientation
of this report should be changed to fit on a printed page properly.

3. Close the TIFF viewer.

4. Using Visual Studio, open the Product Sales and Profitability Chart report in the Ren-
dering solution.

5. In the Properties window, the current item should be Report. If it isn’t, click Report in
the Properties item drop-down list to access the Report’s properties.

6. Expand PageSize, and then change the Width property to 14in and the Height property
to 11in.

6-2250-7.book Page 360 Tuesday, March 21, 2006 3:45 PM

Chapter 13: Rendering Reports 361

Your screen should look similar to this:

7. Click the Preview tab, and then click the Print Layout button.

Your screen should look similar to this:

The matrix fits horizontally on the page when you change the dimensions of the page to
force a landscape orientation.

6-2250-7.book Page 361 Tuesday, March 21, 2006 3:45 PM

362 Part IV: Delivering Reports

8. Click the Next Page button.

Because the full matrix doesn’t fit on the page vertically, a second page is created. Notice
that the column headers appear at the top of the matrix on this page.

9. Save and then deploy the report.

10. In Report Manager, with the Product Sales and Profitability Chart open, click Refresh on
the Report toolbar to load the updated report definition.

11. Click TIFF File in the Export list box, click the Export link, and then click Open in the
File Download dialog box.

The image looks like this:

The TIFF format now displays the complete width of the matrix, just like the print pre-
view you saw in Visual Studio. The second page with the remaining rows of the matrix
is part of the same file, which you can view by clicking the Next Page button (Page
Down) at the bottom of the viewer.

12. Close the TIFF viewer.

Rendering as a PDF File

A PDF file created by exporting a report from Reporting Services is much like an MHTML doc-
ument in that what you see in the HTML version is what you get in the exported file. Conse-
quently, the PDF file is not the best format for reports with interactive features like dynamic
visibility. However, it’s a very good format for large reports that might take some time to ren-
der online, for printing reports, and for sharing documents outside of the Reporting Services
environment. Because this format renders what you see in the original report, any data region

6-2250-7.book Page 362 Tuesday, March 21, 2006 3:45 PM

Chapter 13: Rendering Reports 363

in a report renders properly in the PDF file. Because PDF is a page-oriented format, you must
take care in the design of the report to ensure that the report items, when rendered, fit within
the defined physical size of the page.

A particularly useful feature in a PDF file is the document map. It renders with the PDF file to
help users find specific information within a large report. (You have to wait until all pages of
an HTML report finish rendering in the background before the document map is available
online, but once a PDF file is created, there’s no waiting!) A document map is added in the
authoring stage by assigning a label to a group (in a table, matrix, or list).

In this procedure, you’ll add another group to the document map for the Product Catalog. In
a later procedure, you’ll export the Product Catalog as a PDF file.

Add groups to a document map

1. In Report Manager, click the Rendering link, and then click the Product Catalog report
link.

Your screen looks like this:

When a report is designed with a document map, the document map automatically
appears as a frame in the page to the left of the report.

Note Even though the document map appears automatically, it doesn’t necessarily
appear immediately in all reports. You will see the first page of an HTML document
before all pages in the report have been rendered. Reporting Services can’t generate the
document map until all rendering is complete.

6-2250-7.book Page 363 Tuesday, March 21, 2006 3:45 PM

364 Part IV: Delivering Reports

2. Select Clothing in the Document Map pane.

The report now displays the first product subcategory in this section of the report, Bib-
Short. You can continue browsing through the Clothing category by scrolling through
this page or by clicking the Next Page button a few times. However, having a more
detailed document map would be preferable.

3. Leave the report open in Report Manager, because you will return to this report later in
this procedure.

4. Using Visual Studio, open the Product Catalog report in the Rendering solution.

5. Scroll through the report until you see the textboxes that contain field expressions, as
shown here:

This report is constructed as a collection of nested lists. The outermost list repeats Cat-
egory information, which includes the expression =Fields!ProdCat.Value. You can’t
click the design grid to access this list’s properties because the grid is fully covered by
other report items. Instead, you need to use the Properties window to change the list
properties.

6. In the Properties window, select CategoryList in the drop-down list, and then click the
Grouping property’s ellipsis button.

6-2250-7.book Page 364 Tuesday, March 21, 2006 3:45 PM

Chapter 13: Rendering Reports 365

The Grouping and Sorting Properties dialog box is displayed:

Notice that =Fields!ProdCat.Value appears in the Document Map Label drop-down
list. This value is used to configure the current document map. In this case, a new group
is created in the list for each product category (ProdCat) value. The label that corre-
sponds to the position of a particular group will be the same value. So, for example, the
Bike group in the report will be labeled as Bike in the document map.

7. Click Cancel.

8. In the Properties window, select SubCategoryList in the drop-down list, and then click
the Grouping property’s ellipsis button.

9. Select =Fields!ProdSubCat.Value in the Document Map Label drop-down list.

Since SubCategoryList is nested within CategoryList, the label for this group will appear
as a node of the category group to which it belongs. In other words, you will expand a
category in the document map to view the available subcategories for that category.

10. Click OK.

11. In the Properties window, select ModelList in the drop-down list, and then click the
Grouping property’s ellipsis button.

12. Select =Fields!ProdModel.Value in the Document Map Label drop-down list.

By adding a document map label to this list group, you are adding yet another level to
the document map. Specifically, a subcategory will expand to reveal its associated
models.

13. Click OK, and then save the report.

6-2250-7.book Page 365 Tuesday, March 21, 2006 3:45 PM

366 Part IV: Delivering Reports

14. In Solution Explorer, right-click ProductCatalog.rdl and click Deploy. Keep the solution
open in Visual Studio for use in another procedure later in this chapter.

In this procedure, you’ll export the Product Catalog as a PDF file.

Export a report as a PDF file

1. In Report Manager, with the Product Catalog open, click Refresh on the Report toolbar
to load the updated report definition.

Notice that the Document Map now has plus signs to indicate each category can be
expanded.

2. Select Acrobat (PDF) File in the Export drop-down list, click the Export link, and then
click Open in the File Download dialog box.

Since this is a bigger report than you have previously viewed, the export process might
take a little longer.

3. Click the Bookmarks tab to display the document map.

4. In the Document Map, collapse Accessory and Bike to view the Clothing category. In the
Jersey subcategory, click Long-Sleeve Logo Jersey to navigate to that product model in
the Product Catalog.

Your screen looks similar to this:

You can click any level of the document map—category, subcategory, or model—to jump
to the section of the report that marks the beginning of the selected group.

5. Close Acrobat Reader.

6-2250-7.book Page 366 Tuesday, March 21, 2006 3:45 PM

Chapter 13: Rendering Reports 367

Rendering for Data Exchange
Besides viewing reports online or creating printable documents from reports, you will likely
need to use information contained in reports in other ways. It’s a very common requirement
of reporting systems to export data to Excel so that users can perform more complex analysis
or even integrate data from other sources. For example, if you keep forecast data in an Excel
spreadsheet, you could export sales data from Reporting Services to Excel and then add a for-
mula to compute the ratio of actual performance to forecasted performance.

It’s also becoming more common for businesses to exchange information electronically. A
retailer can submit an order electronically, and a supplier can return an electronic invoice.
This information is typically exchanged in a structured format, such as in a delimited file or an
XML file. You can use Reporting Services to convert a report to a CSV or an XML file for data
exchange.

As you learned earlier in this chapter, you can use a report’s interactive features in the default
HTML format, and you can also take advantage of PivotTable interactivity by exporting a
report to HTML with Microsoft Office Web Components. However, these formats still have a
limited scope of interactive features, and you must connect to the Report Server to use the
report data. You can export a report to Excel to use the full range of its features to explore and
manipulate a local copy of the data. Some interactive features that are integrated into the
report, such as actions, are also rendered in the Excel version of the report.

To share data with other applications or external information consumers, you can export a
report to a CSV file. This file is intended for use as input into a process or application, and is
not intended for a user to read. Rows and columns (which are delimited with a comma by
default) are created for the lowest level of detail in the report, regardless of data region. Essen-
tially, the CSV file is a flattened rowset of the report data.

Another way to share data is to export a report to an XML file. As with the CSV file, the XML
file is not intended to be read by a user, but instead is meant to be used by another application.
The file contains XML elements and attributes that define the structure of the data and also
supply the data. However, none of the formatting from the source report is preserved in the
XML file. In this case, the XML file contains raw data that retains its original structure rather
than getting flattened as data exported to a CSV file does.

Rendering as an Excel File

Excel is a popular application for analyzing data. By exporting data to an Excel file, you have
access to the report data even when you’re disconnected from the Report Server. You can also
add your own formulas or incorporate data from other sources into your Excel workbook.

Though all the data regions that can be in a report are also supported in Excel, the Excel for-
mat is best used with a table or a matrix. A chart can be rendered in Excel, but it is rendered
as a picture and not as an Excel chart that you can modify. A list will be rendered with

6-2250-7.book Page 367 Tuesday, March 21, 2006 3:45 PM

368 Part IV: Delivering Reports

repeating groups, as it is in an HTML report, but the items contained in the list will be ren-
dered in positions that correspond to their relative positions in the original report, which
might conflict with the position of items that aren’t contained in the list. A subreport is not
recommended for export to Excel.

The Excel version keeps most of the features and formatting of the original report, including
pagination, actions, and a document map. However, if a report has been designed using
dynamic visibility, all items hidden in the original report will be visible in the Excel version of
the report.

Microsoft Visual Basic .NET formulas are converted to an Excel formula if Excel has an equiv-
alent. The formulas that get translated are those that use report item expressions, not field
expressions. Otherwise, the result of the expression is stored in a cell as a constant value. For
example, if a textbox contains an expression like =Sum(Fields!UnitPrice.Value *
Fields!OrderQty.Value), there is no equivalent in Excel. When a report containing this
expression is rendered to Excel, the calculation is performed and the resulting value, rather
than the formula, is stored in the Excel cell.

In this procedure, you’ll export the Order Details report, which has interactive features such
as dynamic visibility and drillthrough, as an Excel file.

Export an interactive table to Excel

1. In Report Manager, click the Rendering link, and then click the Order Details report
link.

Your screen looks similar to this:

6-2250-7.book Page 368 Tuesday, March 21, 2006 3:45 PM

Chapter 13: Rendering Reports 369

This report includes a table in which dynamic visibility is used to hide the detail rows
and a subtotal row when the report is opened. Notice that on the row that contains the
order header information (order number and dates), the quantity and extended price
are also displayed.

2. Expand order number SO8501 to display the detail rows, as shown here:

Now the quantity and extended price in the order header row are hidden. The product
row and the order subtotal row are displayed below the order header row.

3. Collapse order SO8501.

Now the order header information is again displayed with the quantity and extended
price, and the rows below the order header information are hidden.

6-2250-7.book Page 369 Tuesday, March 21, 2006 3:45 PM

370 Part IV: Delivering Reports

4. Select Excel in the Export drop-down list, click the Export link, and then click Open in
the File Download dialog box to view the Excel report, as shown here:

Tip If you save the Excel report directly to disk at this point, you must use Office XP
Excel or later to open the file. By clicking Open, you can use the Save As Workbook fea-
ture to share the file with users who have an earlier version of Excel.

Here, all detail rows that were hidden in the HTML version of the report remain hidden,
but are grouped. You can expand each group to view the details. The quantity and
extended price in the order header are also displayed, regardless of whether you choose
to display the details. You can see that dynamic visibility is not rendered in the Excel
report, but all the data is included in the report.

Note This result of handling dynamic visibility when rendering to Excel is unlike ren-
dering to MHTML or the page-oriented formats, PDF or TIFF. In those formats, only the
currently visible rows are rendered. By contrast, all rows—regardless of whether they’re
visible—are rendered in the Excel format.

5. Expand row 8, and then click the LL Mtn Frame – Silver, 44 link in cell B9.

6-2250-7.book Page 370 Tuesday, March 21, 2006 3:45 PM

Chapter 13: Rendering Reports 371

Your screen looks like this:

The link in the report is defined as a drillthrough action that opens the HTML version of
the drillthrough report in a browser window. Notice that the URL in Internet Explorer’s
Address bar references the Report Server virtual directory rather than the Reports direc-
tory that you have seen with other reports that you access using Report Manager. You’ll
learn more about accessing reports directly with URLs in Chapter 18.

Note The bookmark and hyperlink actions are also supported in Excel. You can work
with the Excel file while disconnected from the network, but you must have connectiv-
ity when using the hyperlink action (to access the URL defined for the hyperlink) and
when using the drillthrough action (to access the Report Server hosting the drill-
through report).

6. Close the browser window with the drillthrough report and close Excel.

Rendering a Report as a CSV File

If you need to provide information in document form for a person to read and you also need
to provide a structured file for input into an application, you can satisfy both requirements
with one report in Reporting Services. When you export a report to a CSV file, the data is flat-
tened (or denormalized) so that each row in the file represents the lowest level of detail in the
report, with higher-level information incorporated into the row. For example, a textbox that
contains the report title will be rendered as a column in the CSV file, so each row will contain
the report title even though it appears in the HTML report only once.

6-2250-7.book Page 371 Tuesday, March 21, 2006 3:45 PM

372 Part IV: Delivering Reports

The format of the CSV file is predefined as comma-delimited fields with records delimited by
a carriage return and line feed. If a delimiter appears in a text string, the string is contained
within quotation marks as a text qualifier. The header row of the file contains the names of the
report items that correspond to each column. The CSV format just described is used by
Report Manager by default. Through programmatic rendering (which is discussed in Chapter
18), you can define different delimiters, specify a different text qualifier, omit the header row,
supply a different file extension, or change the default encoding from Unicode.

In this procedure, you’ll export the Order Details report as a CSV file.

Export a table as a CSV file

1. In Report Manager, with the Order Details report open, select CSV (Comma Delimited)
in the Export drop-down list, click the Export link, and then click Save in the File Down-
load dialog box.

If you click Open, the file will be opened using Excel, which can be difficult to read.

2. Save the file as Order Details.csv in the C:\Documents and Settings\<username>\My
Documents\Microsoft Press\rs2005sbs\Workspace folder.

3. Close the browser window that opened as part of the file download process.

4. Using Microsoft Notepad, open the Order Details.csv file.

The file looks like this if word wrap is turned off:

Notice that the header row contains names of the report items. In this report, the report
item names were assigned by default. Normally, this doesn’t matter, because the user
doesn’t see the report item name elsewhere. In a CSV file, however, it’s difficult to know
exactly what you’re looking at without referring back to the report definition.

Tip If you know that a report will be used for export as a CSV file, you should rename
the report items in the authoring stage so the output is more meaningful when
exported.

In this example, there are only two rows because the table in this report includes only
two detail rows, which represent the lowest level of detail in this report. The first two col-
umns of each row are the report title and the date range, which appear above the table
in the HTML rendering.

6-2250-7.book Page 372 Tuesday, March 21, 2006 3:45 PM

Chapter 13: Rendering Reports 373

The next five columns in each row represent, respectively, order number, order date,
ship date, quantity, and extended price. These latter two columns are the textboxes that
are hidden when the detail rows are visible. Just as with Excel rendering, the CSV ren-
dering ignores dynamic visibility and puts all data into the target file. These columns are
followed by the data in the subtotal row—again, quantity and extended price. Then, the
final four columns represent the data elements found in the detail row. Notice the quo-
tation marks used as a text qualifier when a comma is embedded in a string.

5. Close Notepad.

Rendering a Report as an XML File

You can also create a structured file using an XML format. The hierarchical structure of the
data is tagged in the file, unlike the CSV file, which flattened the data to its lowest level. Obvi-
ously, the application that will eventually translate this file will need to understand the mean-
ing of this structure. Because report item names are used to distinguish XML elements in the
document, you’ll need to carefully consider your naming conventions in the report design.

In this procedure, you’ll export the Order Details report as an XML file.

Export a table as an XML file

1. In Report Manager, with the Order Details report open, select XML File With Report
Data in the Export drop-down list, click the Export link, and then click Open in the File
Download dialog box.

The XML document is displayed in a browser window like this:

6-2250-7.book Page 373 Tuesday, March 21, 2006 3:45 PM

374 Part IV: Delivering Reports

Notice that the outermost element that contains data is the table1 element. Nested
within this element are the elements that define the grouping in the table, table1_Order,
which are themselves organized into an element called table1_Order_Collection, which
was created by the XML rendering process. Each table1_Order element has a set of
attributes that correspond to the report items that make up the order header in the
table. Detail rows are also organized into a collection, with attributes to contain the val-
ues in each detail row.

Also notice that the subtotal information that has dynamic visibility in the HTML ren-
dering is included twice as attributes of the table1_Order element. The first instance cor-
responds to the values that are displayed in the order header row, and the second
instance corresponds to the values that are displayed with the detail rows. Because the
rows in which these values appear belong to the table1_Order group in the table, they
both become attributes of the table1_Order element in the XML file.

2. Close all browser windows.

Chapter 13 Quick Reference

To Do this

Render a multiple page report as a
single page

On the Report toolbar in Report Manager, select Web Archive in the
Export drop-down list, and then click the Export link.

Add a document map to a report Open the report using Visual Studio. In the Properties window, click
the report item that contains the grouping to be added to the docu-
ment map, and then click the Grouping property’s ellipsis button. Click
the applicable expression in the Document Map Label list box, such as
=Fields!ProdCat.Value.

Render a report to a page-oriented
format

On the Report toolbar in Report Manager, click either Acrobat (PDF)
File or TIFF File in the Export list box, and then click the Export link.

Render a report for offline analysis On the Report toolbar in Report Manager, select Excel in the Export
drop-down list, and then click the Export link.

Render a report as a structured
data file for data exchange

On the Report toolbar in Report Manager, select either CSV (Comma
Delimited) File or XML File With Report Data in the Export drop-down
list, and then click the Export link.

6-2250-7.book Page 374 Tuesday, March 21, 2006 3:45 PM

375

Chapter 14

Managing Subscriptions

After completing this chapter, you will be able to:

■ Create a standard subscription to e-mail a report.

■ Add a standard subscription to place a report on a file share.

■ Define a data-driven subscription to retrieve recipients and subscription options from
a relational table.

■ Monitor the status of a subscription.

■ Delete an inactive subscription.

In the previous two chapters, you learned about accessing reports online and about how
reports can be rendered into different formats. You can also use Reporting Services to deliver
reports directly to users in any rendering format. In this chapter, you learn how to use sub-
scriptions as an alternative method to execute and deliver reports to users. You also learn how
to monitor and manage subscriptions.

Creating a Standard Subscription
Subscriptions allow users to take full advantage of the “push” paradigm that is supported
by Reporting Services. In other words, users can decide what information they want sent to
them automatically and are not limited to “pulling” information from the reporting plat-
form. A subscription can be defined to deliver a specific report to an e-mail account or to a
network file share on a scheduled basis. You can also install a custom or third-pary delivery
extension if you have other delivery requirements. For example, you might want to try out
the sample delivery extension to send a report to a printer that is described in Reporting
Services Books Online.

By default, the Browser role includes the task assignment, “Manage individual subscriptions,”
that allows a user to add, change, or delete his or her own subscriptions, whereas the Content
Manager role is assigned the task, “Manage all subscriptions,” that controls all subscriptions
defined on the Report Server. Users can create a subscription for any report to which they
have access, but only if the report uses stored credentials (because a subscription executes a
report in unattended mode).

Delivery of a subscription can be triggered either by a defined schedule or by the update of a
snapshot (which can be updated manually or according to a schedule). When the triggering
event occurs, the Report Server reads the delivery information from the subscription, which it

6-2250-7.book Page 375 Tuesday, March 21, 2006 3:45 PM

376 Part IV: Delivering Reports

passes to the delivery extension. The delivery extension is responsible for rendering and deliv-
ering the report as defined in the subscription. If an error occurs during delivery, the problem
is logged in the ReportServerService_<timestamp>.log file.

Disabling Subscriptions
You can prevent users from using subscriptions by removing the “Manage individual
subscriptions” task assignment. Users will no longer be able to access the Subscription
page of a report when using Report Manager, but any active subscriptions will continue
to execute.

Rather than completely disable subscriptions, you might prefer to prevent the use of a
specific delivery extension. If you remove a delivery extension from the RSWeb-
Application.config configuration file, this extension is no longer available as a report
delivery option in Report Manager. You can also remove the delivery extension from
the RSReportServer.config file, but any subscriptions that were using that delivery
extension will become inactive. Inactive subscriptions, because they don’t do any-
thing, don’t cause any problems on the Report Server, but it’s considered good prac-
tice to delete the inactive subscriptions that result from the removal of a delivery
extension. (Handling inactive subscriptions is discussed later in this chapter.)

Delivering a Report by E-Mail

Use e-mail delivery when you want to mail a rendered report. If you use the Web Archive ren-
dering option, the report is embedded in the e-mail message. If you do not use this option, the
report is sent as an attachment. Alternatively, you can define the subscription to send a link to
a report on the Report Server, or even to send just a notification message that a report is ready
for viewing on the server.

To use e-mail delivery, you must have a local or remote Simple Mail Transport Protocol
(SMTP) server available on the same network as your Report Server. During installation of
Reporting Services, you can specify an SMTP server address and an e-mail address that
appears as the sender of the message. You can change these values, as well as configure other
e-mail delivery settings, by editing the RSReportServer.config file. For example, you can
restrict the delivery of reports to specific domains by adding the Data Source Name (DSN) or
the IP address to PermittedHosts. You can find a complete list of available settings and valid val-
ues in SQL Server Books Online.

In this procedure, you’ll create a subscription for the Employee Product Sales report that
embeds the report in an e-mail message and sends the report.

6-2250-7.book Page 376 Tuesday, March 21, 2006 3:45 PM

Chapter 14: Managing Subscriptions 377

Create a standard e-mail subscription

1. Run PublishChap14.cmd in the folder C:\Documents and Settings\<username>\My
Documents\Microsoft Press\rs2005sbs\chap14 folder to publish the reports you need
so that you can follow the procedures in this chapter.

Important To complete the procedures related to e-mail delivery in this chapter, you
must have your Microsoft Internet Information Services (IIS) server configured to use
SMTP with a local domain alias of adventure-works.com, or substitute your own e-mail
address in place of the supplied e-mail address. For specific instructions, refer to the
Introduction to this book.

2. Open Report Manager in Internet Explorer at http://localhost/Reports.

If Report Manager is already open, you will need to use Internet Explorer’s Refresh but-
ton to view the published reports.

3. Click the Delivery folder link.

4. Click Show Details, and then click the Properties icon in the Edit column to the left of
the Employee Product Sales report, as shown here:

5. Click the Data Sources link, select Credentials Stored Securely In The Report Server,
type ReportExecution as the user name and ReportExecution as the password, and
then click Apply.

You will not be able to add a subscription to a report unless it uses stored credentials.

6. Click the Subscriptions tab.

6-2250-7.book Page 377 Tuesday, March 21, 2006 3:45 PM

378 Part IV: Delivering Reports

Your screen looks like this:

7. Click New Subscription.

The Subscription definition page is displayed:

The default delivery method is Report Server E-Mail. In the To text box, the current
user name is automatically added as the default recipient. (You can override this
behavior by editing the RSReportServer.config configuration file so the To field is not

6-2250-7.book Page 378 Tuesday, March 21, 2006 3:45 PM

Chapter 14: Managing Subscriptions 379

populated automatically.) Also notice the default Subject text box: @ReportName Was
Executed At @ExecutionTime. The current report name and the execution name are
inserted when the e-mail message is prepared for delivery. These two names match
variables in the Globals collection in Report Designer, but you cannot use any of the
other Global variables in the Subject line.

8. Replace the value in the To text box with PacificDirector@adventure-works.com.

As with a regular e-mail message, you can send a subscription to multiple users by sep-
arating the e-mail addresses with a semicolon (;), or you can send the report to copied
recipients and blind copied recipients. Optionally, you can include a Reply-To e-mail
address.

9. Click the Render Format drop-down list to review the available options, but keep the
default value of Web Archive.

10. Clear the Include Link check box.

The Report Delivery Options portion of the page looks like this:

In this case, only an embedded report will be sent in the e-mail message. If you also clear
the Include Report check box, only a notification message will be sent.

11. Click Select Schedule.

12. Click Once to specify the frequency of the report.

In this procedure, you’ll run the subscription one time to generate output. Normally,
you would specify a periodic frequency for a subscription schedule. This schedule that
you create will apply to the current subscription only.

6-2250-7.book Page 379 Tuesday, March 21, 2006 3:45 PM

380 Part IV: Delivering Reports

13. Enter a start time that is 3 minutes ahead of the current time and select the correct A.M.
or P.M. option.

Your screen looks similar to this (with a different time specified):

14. Click OK.

15. Replace the Group parameter value with Pacific.

16. Select the Use Default check box for the Year parameter.

Note If you were to select a report snapshot for the subscription, you wouldn’t be
able to edit parameter values used as query parameters. The values in the rendered
report for the subscription will match those of the snapshot. However, if the report
parameter is used as a filter, you can modify it in a subscription.

6-2250-7.book Page 380 Tuesday, March 21, 2006 3:45 PM

Chapter 14: Managing Subscriptions 381

The bottom of the Subscriptions page looks like this:

17. Click OK.

The Subscriptions page for the Employee Product Sales report looks like this:

6-2250-7.book Page 381 Tuesday, March 21, 2006 3:45 PM

382 Part IV: Delivering Reports

Important The SQL Server Agent must be running to create a subscription. If it isn’t
running, you’ll receive an error when you click OK to create the subscription.

18. After waiting 3 minutes, click Refresh on the Internet Explorer toolbar.

The Subscriptions page for the Employee Product Sales report looks similar to this:

When the subscription is delivered, the Last Run and Status columns are updated.

19. If you’re using a local SMTP Server, open Microsoft Windows Explorer, navigate to
the C:\Inetpub\mailroot\Drop folder, and double-click the e-mail file (with exten-
sion .eml) located there. Otherwise, if you’re using a local Post Office Protocol v3
(POP3) Server, navigate to C:\Inetpub\mailroot\Mailbox\adventure-works.com
\P3_PacificDirector.mbx and open the message file in that folder.

6-2250-7.book Page 382 Tuesday, March 21, 2006 3:45 PM

Chapter 14: Managing Subscriptions 383

Your screen looks similar to this:

At the scheduled time, Reporting Services executed the report, which it embedded as
Multipurpose Internet Mail Extensions (MIME) Encapsulated Aggregate HTML
(MHTML) into the body of an e-mail message. Notice that the subject line is updated
with the report name and execution time. The From e-mail address is defined in the
Report Server configuration file.

Delivering a Report to a File Share

Instead of e-mailing a report to recipients, you can use file share delivery to put a copy of a
report on a file share in a designated location. You can use any rendering format. With file
share delivery, you can choose to overwrite an existing file or have Reporting Services generate
incremental file names to track versions of the same report. You must supply credentials with
write permission on the file share.

In this procedure, you’ll create a subscription for the Actual Vs Quota report, which renders
the report as a Microsoft Excel file and places it on a file share.

6-2250-7.book Page 383 Tuesday, March 21, 2006 3:45 PM

384 Part IV: Delivering Reports

Create a standard file share subscription

1. Open Windows Explorer, right-click on the C:\Documents and Settings\<username>
\My Documents\Microsoft Press\rs2005sbs\Workspace folder, and then click Sharing
And Security.

2. On the Sharing tab of the Workspace Properties dialog box, select Share This Folder,
and then click Permissions.

Note The specifics for establishing a file share might vary if you’re using a different
operating system. The instructions in this procedure are written with the assumption that
you are using an edition of Microsoft Windows Server 2003 or Windows XP with simple
file sharing disabled.

3. On the Share Permission tab of the Permissions For Workspace dialog box, click Add
and type ReportServer2005 in the Enter The Object Names To Select box. Select Check
Names to validate the account, and then click OK.

Note ReportServer2005 is the Windows account added in Chapter 2, “Installing
Reporting Services,” to run the ReportServer service. You can use another user account in
its place if you prefer.

4. Select Change in the Allow column of the Permissions, and then click OK twice to close
all dialog boxes.

5. In Report Manager, click the Delivery link.

6. In the Edit column of Actual Vs Quota, click the Properties icon.

7. Click the Data Sources link, click Credentials Stored Securely In The Report Server, type
ReportExecution as the user name and ReportExecution as the password, and then
click Apply.

8. Click the Subscriptions tab, and then click New Subscription.

9. In the Delivered By list, select Report Server File Share.

6-2250-7.book Page 384 Tuesday, March 21, 2006 3:45 PM

Chapter 14: Managing Subscriptions 385

A new Subscription definition page is displayed:

In the Path text box, type \\computername\Workspace.

Important Replace computername with the name or IP address of your local com-
puter. Do not use localhost. If you do, Reporting Services will not be able to access the
correct file share. Whenever you specify a file share path on a remote computer, you
must use the Universal Naming Convention (UNC) instead of a mapped network drive.

10. Select Excel in the Render Format list.

Notice that the only rendering option missing from this list is HTML with Office Web
Components. This format doesn’t work properly when stored on a file share.

11. Type ReportServer2005 as the User Name, but leave the password blank for now.

12. Select Increment File Names As Newer Versions Are Added.

6-2250-7.book Page 385 Tuesday, March 21, 2006 3:45 PM

386 Part IV: Delivering Reports

Your screen looks like this:

This overwrite option configures Reporting Services to append a number to the file
name that increments by one each time this subscripton is executed if there is an exist-
ing file of the same name already on the file share. With this option, the existing file is
not overwritten, and a separate file—distinguished by a number added to the file name—
is placed on the file share.

13. Click Select Schedule.

14. Select Once to specify the frequency of the report.

In this procedure, you’ll run the subscription just once to generate output.

15. Enter a start time that is 3 minutes ahead of the current time and select the correct A.M.
or P.M. option.

16. Click OK.

17. Enter the password for the ReportServer2005 account.

Note As with stored credentials used with a data source, the password entered for
subscriptions is also encrypted and stored in the ReportServer database.

If you had entered the password directly after you entered the user name, the password
would have been cleared because you left the page to make changes to the subscription
schedule page. Anytime you return to a page that has credentials, even if you’ve entered
the full credentials earlier, you are always required to enter the password.

6-2250-7.book Page 386 Tuesday, March 21, 2006 3:45 PM

Chapter 14: Managing Subscriptions 387

18. Select the Use Default check boxes for both the Group and CalendarYear parameters.

The bottom of the page looks like this:

19. Click OK.

The Subscriptions page for the Actual Vs Quota report looks like this:

20. After waiting 3 minutes, click Refresh on the Internet Explorer toolbar.

6-2250-7.book Page 387 Tuesday, March 21, 2006 3:45 PM

388 Part IV: Delivering Reports

The Subscriptions page for the Actual Vs Quota report looks similar to this:

When the subscription is delivered, the Last Run and Status columns are updated.

21. In Windows Explorer, open the C:\Documents and Settings\<username>\My
Documents\Microsoft Press\rs2005sbs\Workspace folder.

The Actual Vs Quota.xls file is in the Workspace folder. Even though you set the Over-
write Option to increment the number added to the file name, the first instance of the
file is assigned the same name as the report. The file name is incremented only when a
file of the same name already exists.

22. Double-click the Actual Vs Quota.xls file to open the file in Excel.

6-2250-7.book Page 388 Tuesday, March 21, 2006 3:45 PM

Chapter 14: Managing Subscriptions 389

Your screen looks like this:

23. Close both Excel and Windows Explorer, but keep the Actual Vs Quota subscription
properties page open in Report Manager.

Creating a Data-Driven Subscription
Using a data-driven subscription, Reporting Services can execute a report one time, render it
in several different formats, and then send the results to many destinations. Destinations can
be e-mail recipients or file shares. With a data-driven subscription, you can e-mail a report to
a list of users that can change dynamically over time, and you can customize the rendered for-
mat of the report for each recipient. You can even customize parameter values by recipient as
well as configure delivery options, such as including a report in an e-mail message or sending
a link to the report. You need to create a relational table to manage these settings, and then cre-
ate a data-driven subscription that queries this table when the report is rendered.

Creating a Subscription Delivery Table

A subscription delivery table allows you to manage a list of destinations with delivery options,
rendering preferences, and parameter values. Reporting Services does not provide an interface
for you to build and maintain this table, but you can use your favorite SQL Server tool to set
up the table and load it with data. At a minimum, you need to define a column for the sub-
scription destination if all you want to do is manage a list of recipients. The main advantage of
this table, however, is the ability to configure many options to customize the subscription for
each recipient.

6-2250-7.book Page 389 Tuesday, March 21, 2006 3:45 PM

390 Part IV: Delivering Reports

In this procedure, you’ll review the contents of the SubscriptionGroupDirector table in the
rs2005sbsDW database.

Browse the contents of a subscription delivery table

1. Open Microsoft SQL Server Management Studio, expand the local instance (or the
instance to which you installed Reporting Services and the practice files), expand the
Databases folder, expand the rs2005sbsDW database, and then click Tables.

2. Right-click SubscriptionGroupDirector, and then click Open Table.

The table looks like this:

Notice that the records in this table define subscription options for each Sales Director.
You will use this table to apply these options to a data-driven subscription that custom-
izes the delivery of reports to each territory group director. Two of the directors will have
the report included in the e-mail message, while one will have a link to the report. Each
director will receive a different rendered format, and each will see different data in the
report because a different parameter is used to filter the data for each director.

Note The structure of this table is provided as an example. You can create a more
complex table if you need to manage additional subscription options.

3. Close Microsoft SQL Server Management Studio.

Creating a Data-Driven Subscription

After you create a subscription delivery table and populate it with data, you are ready to create
a data-driven subscription. Rather than set the delivery options directly, as you did with the
e-mail delivery, you will define a query that returns rows from the subscription delivery
table. You then assign columns of the table to corresponding delivery settings and, option-
ally, to parameter values. A report is created for each row that is in the table and delivered
according to the settings specific to each row.

6-2250-7.book Page 390 Tuesday, March 21, 2006 3:45 PM

Chapter 14: Managing Subscriptions 391

In this procedure, you’ll create a new data-driven subscription to send the Actual Vs Quota
report by using the information in the subscription delivery table.

Create a data-driven subscription

1. In Report Manager, on the Actual Vs Quota subscription Subscriptions tab, click New
Data-Driven Subscription on the toolbar.

2. Type a description: Actual Vs Quota Subscription.

3. Select Report Server E-Mail in the Specify How Recipients Are Notified drop-down list.

4. Keep the default data source option, Specify For This Subscription Only.

Your screen looks like this:

5. Click Next.

6. Type this connection string: data source=localhost; initial catalog=rs2005sbsDW.

7. Type ReportExecution as the user name and ReportExecution as the password.

6-2250-7.book Page 391 Tuesday, March 21, 2006 3:45 PM

392 Part IV: Delivering Reports

Your screen looks like this:

Note The connection string and credentials used here are used to connect to the sub-
scription information table and are not used by Reporting Services to execute the report.
For report execution, the data source defined for the report is still used.

8. Click Next.

9. In the text box, type select * from SubscriptionGroupDirector.

Note This example retrieves all rows from the SubscriptionGroupDirector table. You
can, of course, write a query to filter the table to return only certain rows according to
specific criteria.

10. Click Validate.

6-2250-7.book Page 392 Tuesday, March 21, 2006 3:45 PM

Chapter 14: Managing Subscriptions 393

The lower part of your screen looks like this:

The result of the validation appears as a message at the bottom of the same page. If the
validation is unsuccessful, you will not be able to proceed until the query validates,
even if you don’t click the Validate button. For the query to validate successfully, the
data source must be correctly defined and the credentials must be successfully
authenticated.

Notice also that you can change the query time-out for this query to retrieve the recipi-
ent and subscription options from the subscription delivery table.

11. Click Next.

12. Configure the delivery extension settings according to the following table:

As you can see, each delivery setting can be configured using a column from a subscrip-
tion delivery table, or by supplying a static value or no value for some settings.

13. Click Next.

14. Select the Use Default check box for the CalendarYear parameter.

Delivery setting Option Value

To Get the value from the database To

Reply-To Specify a static value Sales@adventure-works.com

Include Report Get the value from the database IncludeReport

Render Format Get the value from the database RenderFormat

Include Link Get the value from the database IncludeLink

6-2250-7.book Page 393 Tuesday, March 21, 2006 3:45 PM

394 Part IV: Delivering Reports

15. For the Group parameter, select Get The Value From The Database, and then select
GroupParameter in the corresponding drop-down list.

Your screen looks like this:

16. Click Next.

17. Select On A Schedule Created For This Subscription, and then click Next.

18. Select Once to specify the frequency of the report.

You will run the subscription just one time to generate output.

19. Enter a start time that is 3 minutes ahead of the current time and select the correct A.M.
or P.M. option.

20. Click Finish.

6-2250-7.book Page 394 Tuesday, March 21, 2006 3:45 PM

Chapter 14: Managing Subscriptions 395

The Subscriptions properties page looks like this:

21. After waiting 3 minutes, refresh the Subscriptions page for the Actual Vs Quota report,
which looks similar to this:

6-2250-7.book Page 395 Tuesday, March 21, 2006 3:45 PM

396 Part IV: Delivering Reports

When the subscription is delivered, the Last Run and Status columns are updated.
The number of deliveries and the number of errors (if any) are displayed in the Status
column.

22. If you’re using a local SMTP Server, open Windows Explorer, navigate to the
C:\Inetpub\mailroot\Drop folder, and double-click the e-mail file (with extension
.eml) located there. Otherwise, if you’re using a local POP3 Server, navigate to the
C:\Inetpub\mailroot\Mailbox\adventure-works.com folder.

23. If you’re using SMTP, check the timestamp of the new e-mail files, and then double-click
the first e-mail file that was generated at the time that the data-driven subscription exe-
cuted. If using POP3, open the P3_PacificDirector.mbx.

Your screen looks similar this:

This message to the PacificDirector includes a link to the report. In this case, the report
executes on demand. If more sales had been added to the database after the subscrip-
tion processing completed, the report could contain data different from that of a report
that was rendered with the same parameter values and delivered in an e-mail message.
You should factor in this possibility when deciding when to schedule subscriptions and
which delivery options to use.

6-2250-7.book Page 396 Tuesday, March 21, 2006 3:45 PM

Chapter 14: Managing Subscriptions 397

24. In Windows Explorer, double-click the second e-mail file that was generated for the
data-driven subscription if using the local SMTP server or open the P3_NADirector.mbx
mailbox to retrieve the message there.

Your screen looks similar this:

This message to the NADirector has an embedded report. The data in this report is cur-
rent as of the subscription execution time. The parameter value supplied in the sub-
scription filters the data in this report so that sales data for only North America is sent
to the NADirector.

25. In Windows Explorer, double-click the third e-mail file that was generated for the data-
driven subscription if using the local SMTP server or open the e-mail message in the
P3_EuropeDirector.mbx folder.

6-2250-7.book Page 397 Tuesday, March 21, 2006 3:45 PM

398 Part IV: Delivering Reports

Your screen looks similar this:

This message to the EuropeDirector has a PDF file attachment.

26. Double-click the Actual Vs Quota.pdf file to view the file.

As with the embedded report, the data in this report is current as of the subscription
execution time. Only Europe sales are shown in this report.

27. Close the e-mail messages and close Windows Explorer.

Managing Subscriptions
The Subscriptions page of a report shows you information about the existing subscriptions
and the status of each subscription when it last executed. If a subscription has been created,
but not yet executed, the status will be “New Subscription.” If you are assigned the “Manage
individual subscriptions” task, you can see only your own subscriptions on this page, but if
you are assigned the “Manage all subscriptions” task, you can see all subscriptions associated
with a report.

6-2250-7.book Page 398 Tuesday, March 21, 2006 3:45 PM

Chapter 14: Managing Subscriptions 399

Another way to monitor the status of all of your own subscriptions is to use the My Subscrip-
tions page. This page consolidates your subscriptions for all reports on the Report Server. You
can also check the log files in the file system to troubleshoot problems with subscriptions.
You’ll find that certain types of problems can render a subscription inactive. If you’re unable
to correct the condition that caused a problem, you can delete an inactive subscription.

Using the My Subscriptions Page

The My Subscriptions page is the best way to check the status of your subscriptions because
they’re all organized into a single page. The link to My Subscriptions is available at all times at
the top of any Report Manager page. The subscriptions on this page are only those subscrip-
tions that you create. If your role on the Report Server grants you permission to manage all
subscriptions, you must open a specific report and navigate to its Subscriptions page to see
the subscriptions created by other users.

The status information for a successful subscription execution depends on the type of sub-
scription. The status of a successful e-mail delivery will show that mail was sent to the recipi-
ents. If the Report Server could not connect to the mail server, the status will reflect this
failure. Similarly, the status information of a successful file share delivery will note that the file
was written to the named location. However, if the file could not be written to the target loca-
tion, then the status will record the failure.

In the case of a data-driven subscription, the status will include the number of records for
which notifications were delivered and the number of errors that were generated. The number
of notifications should match the total number of records returned by the query to the sub-
scription delivery table. If the number of errors is greater than zero, you will need to review
the trace log to discover what caused the subscription to fail.

In this procedure, you’ll review the My Subscriptions page and edit an existing subscription.

Review the My Subscriptions page

1. In Report Manager, click the My Subscriptions link in the top-right corner of the
browser window.

6-2250-7.book Page 399 Tuesday, March 21, 2006 3:45 PM

400 Part IV: Delivering Reports

Your screen looks similar to this:

2. Click the Last Run column to change the sort order of the subscriptions.

The first time you click a column to change the sort order, the subscriptions sort in
ascending order. Click the column again to reverse the sort order. Right now, only a few
subscriptions appear on this page, so the sorting feature is not particularly helpful. How-
ever, as you add more subscriptions, you’ll find the ability to sort a long list of subscrip-
tions useful. You can sort the subscriptions using any column on this page. You can also
use this page to open a report to which a subscription is attached or even the folder in
which the report is stored.

3. Click the Edit link to the left of the file share delivery subscription for the Actual Vs
Quota report.

Now, you’ll edit the subscription to execute it one more time. Before it actually executes,
you’ll change the credentials assigned to the data source to force an error.

4. Click Select Schedule.

6-2250-7.book Page 400 Tuesday, March 21, 2006 3:45 PM

Chapter 14: Managing Subscriptions 401

5. Change the Start Time of the report to 5 minutes from now, and then click OK.

6. Enter NADirector as both the user name and password, and then click OK.

7. Click the Actual Vs Quota report link for the same subscription, click the Properties tab,
and then click the Data Sources link.

8. Change the Connect Using option to The Credentials Supplied By The User Running
The Report, and then click Apply.

Because a subscription must use stored credentials to execute, choosing this connection
option will cause the subscription to fail.

9. After waiting 5 minutes, click the My Subscriptions link.

Your screen looks similar to this:

The status for the subscription notes a failure because of the change in the report’s use
of credentials.

6-2250-7.book Page 401 Tuesday, March 21, 2006 3:45 PM

402 Part IV: Delivering Reports

Troubleshooting Subscriptions
If you have permissions to access the trace log files, you can review the ReportServer-
Service_<timestamp>.log file to get more information related to subscription processing
and deliveries. For example, if a data-driven subscription is done processing but includes
errors, you can use the log file to investigate the underlying errors. The subscription may
have processed just fine, but the delivery extension may not have been able to connect to
the mail server to forward the messages. If, for some reason, the mail server might not be
available when the Report Server tries to connect, you can configure a certain number of
retry attempts. By default, this value is set to three. You can edit the RSReportServer
.config file to increase or decrease this setting as appropriate for your environment.

Many other situations can cause a subscription to fail. Usually, the status message or the
trace log will indicate what is causing the problem, but in some cases you’ll need to
peform basic troubleshooting. Here are some options to consider:

■ On the Report Server, make sure the delivery extension has not been removed or
disabled. (Always back up the configuration file before making changes!)

■ Check that the SQL Server Reporting Services (MSSQLSERVER) and the SQL
Server Agent (MSSQLSERVER) services are both running.

■ Make sure the destination server is running—either the e-mail server or the target
computer with a file share, depending on the delivery extension used.

■ If using file share delivery, confirm that the file share is configured for write access,
that the subscription is using the proper credentials, and that the disk is not full.

Sometimes the problem can be caused by the report itself. If a subscription uses a snap-
shot, which itself is based on a schedule, confirm that the snapshot schedule is still
active. Changing credentials for the data source to anything other than stored creden-
tials will also cause a subscription to fail. Any modifications to the report definition,
such as a parameter name or data type, can also invalidate a subscription. Finally, if the
report is too big for the recipient’s mailbox, the report will be undeliverable.

6-2250-7.book Page 402 Tuesday, March 21, 2006 3:45 PM

Chapter 14: Managing Subscriptions 403

Deleting Subscriptions

When a subscription can’t be processed, it becomes inactive. You will need to resolve the
problem that caused subscription processing to fail. You can also delete a subscription when
it becomes inactive or when you no longer need it.

You can delete one or more subscriptions on a report’s Subscriptions page or on the My Sub-
scriptions page. To delete a subscription, select the subscription’s check box and then click
Delete. The Delete button is not activated until you select at least one subscription.

In this procedure, you’ll delete a subscription.

Delete an inactive subscription

1. On the My Subscriptions page, select the file share delivery subscription for the Actual
Vs Quota report.

Your screen looks like this:

2. Click Delete.

3. Click OK to confirm the deletion.

6-2250-7.book Page 403 Tuesday, March 21, 2006 3:45 PM

404 Part IV: Delivering Reports

Chapter 14 Quick Reference

To Do this

Reconfigure or disable delivery
extensions

Edit the delivery extension configuration settings in the RSWeb-
Application.config file to modify interaction between Report Manager
and delivery extensions.

or

Configure new values for the delivery extension, such as the number of
retry attempts, in the RSReportServer.config file, or remove all delivery
extension values to disable.

Create an e-mail subscription In Report Manager, open the Subscriptions page of a report, and then
click New Subscription. Use the default delivery method, Report Server
E-Mail, and enter one or more recipient e-mail addresses. Specify a ren-
dering format for the report to be sent and choose whether to include
the report in the message or a link to the report on the Report Server.
Assign a schedule to the report or base the subscription on the update
of a report snapshot. If the report has parameters, select the default pa-
rameter value or provide a value for this subscription.

Create a file share subscription In Report Manager, open the Subscriptions page of a report, and then
click New Subscription. Change the delivery method to Report Server
File Share and enter a file share on the network using a UNC format.
Enter credentials for an account with permissions to write to the file
share. Specify a rendering format for the report to be placed on the file
share and select overwrite options. Assign a schedule to the report or
base the subscription on the update of a report snapshot. If the report
has parameters, select the default parameter value or provide a value
for this subscription.

Create a data-driven subscription Create and populate a subscription delivery table to contain destination
information and subscription options by destination. In Report Manager,
open the Subscriptions page of a report, and then click New Data-Driven
Subscription. Choose a delivery method and a data source that will be
used to connect to the subscription delivery table. Enter a query to re-
trieve values from the subscription delivery table and map these values
to delivery settings and parameter values for the subscription. Assign a
schedule to the report or base the subscription on the update of a report
snapshot.

Monitor subscriptions In Report Manager, view the status of a subscription as of its last execu-
tion using the report-specific Subscriptions page or the global My Sub-
scriptions page.

View trace logs for subscription
processing and delivery
information

Review the log entries in the ReportServerService_<timestamp>.log file.

Delete a subscription In Report Manager, open the report-specific Subscriptions page or the
global My Subscriptions page, select one or more subscriptions, and
then click Delete.

6-2250-7.book Page 404 Tuesday, March 21, 2006 3:45 PM

405

Chapter 15

Creating Reports with Report
Builder

After completing this chapter, you will be able to:

■ Navigate a report model to select attributes for a report.

■ Build a table, matrix, and chart report.

■ Apply formatting to a report.

■ Add a filter to a report.

■ Sort data in a report.

■ Publish a report to the report server.

In the previous chapters of Part IV, “Delivering Reports,” you learned how to use Report Man-
ager to access and deliver reports that were created using the Visual Studio development envi-
ronment. Because using this development environment requires a technical understanding of
the data to include in a report, the task of building enterprise reports is usually assigned to
power users and IT staff. However, the need for information by the rest of the user community
often outpaces the ability of these report developers to produce requested reports. The pur-
pose of Report Builder is to fill this gap, providing users who don’t have the technical knowl-
edge required for writing T-SQL or MDX queries with easy access to information from SQL
Server and Analysis Services databases. In this chapter, you’ll learn how to use Report Builder
for creating ad hoc reports—one more option you have for delivering information to decision
makers in your organization.

Building Basic Reports
When you use Report Builder to create an ad hoc report, you don’t need to know anything
about how data is structured in the source database. You simply select items from a model of
the data and arrange these items in a table, matrix, or chart. You can then view the report in
Report Builder. If you want to access the report later or to share it with others, you can even
save your report to the report server.

Getting Started with Report Builder

Report Builder insulates users from the technical details of querying a database by using a
report model to describe the data elements and the relationship between these data elements

6-2250-7.book Page 405 Tuesday, March 21, 2006 3:45 PM

406 Part IV: Delivering Reports

in a user-friendly way. As explained in Chapter 8, “Building Report Models,” a report model
contains a collection of entities, attributes, and roles. In Report Builder, you navigate through
the report model by selecting an entity to review its attributes, which you can add to the report
layout, or by selecting a role to view attributes for a related entity.

In this procedure, you’ll start Report Builder and explore the interface in preparation for
developing a report.

Launch Report Builder

1. In Internet Explorer, open Report Manager at http://localhost/Reports.

Note If you skipped Chapter 8, open SQL Server Business Intelligence Development
Studio, open the Reseller Sales Report Model solution in the C:\Documents and Settings
\<username>\My Documents\Microsoft Press\rs2005sbs\Answers\chap08\Reseller
Sales Report Model folder. Right-click the Reseller Sales Report Model project in Solution
Explorer, and then click Deploy. The report model and its associated data source will be
deployed to the report server.

2. Click Report Builder on the Report Manager toolbar.

3. Click Run if the Application Run – Security Warning dialog box displays.

This dialog box appears only the first time that the Report Builder application is
launched on a client workstation.

4. In the Source of Data list in the right pane, expand the Reseller Sales model.

Your screen looks like this:

6-2250-7.book Page 406 Tuesday, March 21, 2006 3:45 PM

Chapter 15: Creating Reports with Report Builder 407

You can select either the entire Reseller Sales report model or the Simple Reseller Sales
perspective. The Simple Reseller Sales perspective, which was created in Chapter 8, con-
tains only a subset of objects from the Reseller Sales report model.

Notice the default report layout is Table. You’ll create a report using the matrix and
chart layouts later in this chapter. While the report designer in Visual Studio allows
you to combine multiple data regions in a single report, Report Builder limits you to
one at a time.

5. Click Simple Reseller Sales, and then click OK.

Your screen looks like this:

The Explorer pane on the left displays a list of entities and folders created when you
built the report model. Below the Entities list is the Fields list, which displays the
attributes for the currently selected item in the Entities list. The main portion of the
Report Builder window is the design area in which you work with the report layout.

6. In the Entities list, click Time.

The attributes in the Fields list are associated with the currently selected entity. Here
you see only those attributes that you included in the Simple Reseller Sales perspective
as well as any identifying attributes created by the Report Model Wizard. As discussed in
Chapter 8, the Report Model Wizard determines which attributes uniquely identify each
entity. These identifying attributes are included in all perspectives.

6-2250-7.book Page 407 Tuesday, March 21, 2006 3:45 PM

408 Part IV: Delivering Reports

The design area currently contains four report items. There is a textbox at the top that
you can use to include a title for the report. Below the textbox is an empty table data
region. At the bottom of the report is a textbox that will display the number of rows in
the report and another textbox to display the current filter criteria. These report items
will be explained in more detail later in this chapter.

7. On the Help menu, click Report Builder Help.

These help files provide detailed information on how to use Report Builder. There are
also tutorials to give you more practice with various features of Report Builder. This
information is not included in SQL Server Books Online.

8. Close the Help window.

Building a Report

Once you’ve selected the type of report you want to build, you explore the report model to
find the attributes you want to add to your report. You can double-click an attribute to add it
to the report or drag and drop it to the desired location. When you have finished adding
attributes to the data region, you run the report. Report Builder uses information about those
attributes from the report model to construct a query that retrieves data from the source data-
base and displays the data in the specified structure.

Sometimes, you create an ad hoc report to answer a particular question and don’t need to save
it for future reference. Other times, you may want to view the report again at a later date with
more current information, or you may decide that other people might benefit from the infor-
mation contained in the report. For those situations, you can publish the report to the report
server.

In this procedure, you’ll add attributes to a table, provide a report title, and then view and pub-
lish the report.

Build a table report

1. In the Entities list, click the Geographies folder, and then click the Geography entity.

2. Drag the Country Region Name from the Fields list onto the Drag And Drop Column
Fields area of the table data region.

6-2250-7.book Page 408 Tuesday, March 21, 2006 3:45 PM

Chapter 15: Creating Reports with Report Builder 409

Your screen looks like this:

Unlike the table data region in Visual Studio’s Report Designer, this table does not have
multiple blank cells into which fields can be added. Instead, you drag new attributes,
called fields in Report Builder, to the data region and position them relative to fields
already in the table to create a new column. Notice that, by adding a field to a detail
table, two rows are created in the new column—a header row to display the field name
and a detail row to display the field value.

3. Drag State Province Name from the Fields list to the table, and, when you see an I-bar to
the right of Country Region Name, drop State Province Name at the insertion point.

4. In the Entities list, click the Dim Resellers role.

You can navigate from entity to entity within a model by using roles. Remember that
roles relate a foreign key in one table with a primary key in another table, as described
in Chapter 8. Consequently, when you build a report that includes attributes from one
entity and attributes from an entity that is related through a role, the result is a query
that creates joins between these tables. However, users don’t need to know how these
relationships affect a query, but instead should understand that roles help to group
information.

In this case, Geography data can be used to group Reseller data from the Dim Reseller
entity. Thus, users should understand that adding fields from the Resellers role will be
grouped by the fields added from the Geography entity.

6-2250-7.book Page 409 Tuesday, March 21, 2006 3:45 PM

410 Part IV: Delivering Reports

5. Click the Fact Reseller Sales role.

Fields added from this role will be grouped by fields added from the Dim Reseller entity.
However, if there are no Reseller fields in the report, then the fields will be grouped by
the Geography entity as a result of the Dim Resellers role. Without roles defined in the
report model, users would be limited to using attributes from one entity only.

6. Drag the field Total Order Quantity onto the report and drop it at the right edge of the
table (when you see an I-bar).

Subtotals are automatically added to the table for each numeric field. You can disable
subtotals by right-clicking the column header or the column’s detail row and clearing
the Show Subtotal selection.

7. Repeat the previous step to add Total Sales Amount to the report.

8. Double-click the textbox above the table, and then type Reseller Sales.

Your screen looks like this:

9. Click Run Report on the toolbar to generate the Reseller Sales report.

6-2250-7.book Page 410 Tuesday, March 21, 2006 3:45 PM

Chapter 15: Creating Reports with Report Builder 411

Your screen looks like this:

The arrow icons to the right of each column header indicate that interactive sorting is
automatically enabled for each column in the table. You can click an arrow to change the
column’s sort order. If you plan to publish the report and prefer to disable interactive
sorting for all fields, you can select Report Properties in the Report menu, and then clear
the Allow Users To Sort The Report Data When They View It check box.

10. Scroll down through the first page to review the subtotals for each country.

Even though subtotals are enabled for the State Province Name group, none are shown
here because there are no detail records, which, in this case, would be Resellers. In this
report, because the detail row is the same value as the subtotal, the corresponding sub-
total row is not generated.

Also notice that the column headers remain at the top of the page as you scroll. This fea-
ture is enabled by default in Report Builder. If you plan to publish the report and want
to disable this feature, select Report Properties in the Report menu and then clear the
Fixed Headers check box.

11. Click the Next Page button to view the grand total for all countries.

12. Click Save on the toolbar, name the report Reseller Sales, and then click Save in the
Save Report dialog box.

When you save a report from Report Builder, you store the report definition on the
Report Server along with reports created using Visual Studio’s Report Designer. Also
notice that you can place the report in any folder to which you have access. You cannot
create a new folder here because folders can only be created using Report Manger.

6-2250-7.book Page 411 Tuesday, March 21, 2006 3:45 PM

412 Part IV: Delivering Reports

13. Close the Report Builder window, switch to Report Manager, refresh the page, and then
open the Reseller Sales report.

The report accessed in Report Manager is identical to the report you viewed in Report
Builder. Now that the report is stored on the report server, you can use Report Manager
to perform any of the management tasks you learned about in previous chapters. For
example, you can modify the security settings or change the execution properties.

Building a Matrix Report

When you want to view data in a crosstab format, you create a matrix report in Report Builder.
Just like a matrix report created in Visual Studio, both the number of rows and the number of
columns in the matrix change dynamically according to the results returned by the report
query. A matrix report developed with Report Builder, however, automatically collapses mul-
tiple groupings in rows or columns to produce a drilldown report. In Visual Studio, by con-
trast, you must design the report to collapse groups.

In this procedure, you’ll create and view a matrix report using Report Builder.

Build a matrix report

1. In Report Manager, click the Home link, and then click Report Builder on the toolbar.

2. On the right side of the screen, select Matrix (Cross-tab) to change the Report Layout
option, and then click OK.

3. Double-click the textbox at the top of the design area and enter Reseller Sales - Matrix.

This report will be similar to the table report you created in the previous procedure. In
this procedure, however, you’ll learn how to work with column groupings.

4. In the Entities list, click the Geographies folder, and then click the Geography entity.

5. Drag the Country Region Name field from the Fields window onto the Drag And Drop
Row Groups area of the matrix data region.

6. Drag the State Province Name field to the matrix and drop it to the right of Country
Region Name.

7. In the Entities list, click the Dim Resellers role, and then click the Fact Reseller Sales
role.

8. Drag the field Total Order Quantity to the Drag And Drop Totals area, and then drag and
drop Total Sales Amount to the right of Total Order Quantity.

6-2250-7.book Page 412 Tuesday, March 21, 2006 3:45 PM

Chapter 15: Creating Reports with Report Builder 413

Your screen looks like this:

9. Click Run.Report.

A message box displays:

In Report Builder, you are required to add a row group, a column group, and data ele-
ment to the matrix. Without including these three elements, you cannot save this report.

10. Click OK, and then click the Order Date role in the Entities list.

11. Drag the Calendar Year field to the Drag And Drop Column Groups area.

Subtotals are automatically added on the right for the Calendar Year column group for
both Total Order Quantity and Total Sales Amount.

6-2250-7.book Page 413 Tuesday, March 21, 2006 3:45 PM

414 Part IV: Delivering Reports

12. Position the cursor between the header row and detail row so the cursor changes shape,
and then drag the cursor down to expand the height of the header row to approximately
3/4" like this:

13. Click Run Report.

Your screen looks like this:

6-2250-7.book Page 414 Tuesday, March 21, 2006 3:45 PM

Chapter 15: Creating Reports with Report Builder 415

Notice that you can expand each Country Region Name. State Province names are cur-
rently hidden. When you add multiple column groups to rows (or columns), you auto-
matically create a drilldown report.

14. Expand Canada to view its details by province. Keep the report open for the next
procedure.

Your screen looks like this:

Using Clickthrough

Clickthrough is a special feature of Report Builder that dynamically generates a new report
from the data presented in the report you created. The report model design controls whether
clickthrough is available and which information appears in the clickthrough report. If the
related information, as defined by the relationships specified in the report model, is limited to
data for a single record, then Report Builder displays a list in the clickthrough report. Other-
wise, when the related information corresponds to multiple records in the source database,
Report Builder displays the information in a table.

Important Clickthrough is only available with SQL Server Enterprise edition.

In this procedure, you’ll create a clickthrough report.

6-2250-7.book Page 415 Tuesday, March 21, 2006 3:45 PM

416 Part IV: Delivering Reports

Use Clickthrough to view details

1. Click the Order Quantity Value for Manitoba for 2002.

Your screen looks like this:

You can identify a field that supports clickthrough when the cursor changes to a hand.
This new report shows the individual sales orders that make up the total order quantity
for Manitoba in 2002. By using the clickthrough feature of Report Builder, you can gen-
erate report after report without additional development work in anticipation of the
need for more detailed reports that support a summary report. The number of relation-
ships between entities and the fields contributing to the cell that you click together
determine how many times you can click to generate new reports.

2. Click the first Sales Order Number, SO-1758206-T000952.

6-2250-7.book Page 416 Tuesday, March 21, 2006 3:45 PM

Chapter 15: Creating Reports with Report Builder 417

Your screen looks like this:

This new report shows the details of the sales order, including the sales amount, total
product cost, and the freight amount. From here, you can click through to other
reports, but these additional reports are really just variations on the same data you are
viewing because the model doesn’t support additional relationships with the fields
represented here.

Notice several fields require formatting of the values. However, you don’t have access to
the clickthrough report layout to fix formatting. For this reason, it’s important that you
review the formatting of each attribute in the report model during its design and then
test each attribute by using Report Builder to ensure it displays correctly when click-
through reports are generated.

3. Click the Back To Parent Report button on the toolbar twice to return to the original
report containing the matrix.

Building a Chart Report

If you prefer to view data graphically, you can create a chart report. Report Builder supports
many of the chart types that you can create using Visual Studio: column, bar, area, line, pie,
and doughnut. You can use the Chart Options dialog box to change the chart’s color palette,
format the chart axes and legend, or add 3-D visual effects. If you’ve created charts using Visual
Studio, you’ll find your options for creating charts using Report Builder are very similar.

In this procedure, you’ll create and format a chart report.

6-2250-7.book Page 417 Tuesday, March 21, 2006 3:45 PM

418 Part IV: Delivering Reports

Build a chart

1. Click New on the toolbar, click No when asked if you want to save your current report,
select Chart to change the Report Layout option, and then click OK.

2. Double-click the report title textbox, and then type Reseller Sales – Chart.

3. Click the chart data region.

Your screen looks like this:

Similar to a chart data region in Visual Studio’s report designer, there are drop areas for
category fields, series fields, and data value fields.

4. In the Entities list, click the Geographies folder, click the Geography entity, and then
drag the Country Region Name field to the area labeled Drag And Drop Category Fields.

5. Click the Dim Resellers role, click the Fact Reseller Sales role, and then drag Total Sales
Amount to the area labeled Drag And Drop Data Value Fields.

6. Click Run Report to view the report.

6-2250-7.book Page 418 Tuesday, March 21, 2006 3:45 PM

Chapter 15: Creating Reports with Report Builder 419

Your screen looks like this:

Without formatting, the chart isn’t very legible. You’ll need to apply some changes.

7. Click Design Report, right-click the Total Sales Amount tag above the chart, and click
Format Data Series – Total Sales Amount.

8. Change the text in the Legend Label box to Sales Amount, and then click OK.

9. Right-click the chart background, and then click Chart Options.

10. Click the Titles tab, clear the text from the Chart Title box, change the Category Title of Cat-
egory (X) Axis to Countries, and change the Value Title of Category (Y) Axis to Dollars.

The Chart Options dialog box looks like this:

6-2250-7.book Page 419 Tuesday, March 21, 2006 3:45 PM

420 Part IV: Delivering Reports

11. Click the Legend tab, and then clear the Show Legend check box.

12. Click the 3D Effect tab, select the Display Chart With 3-D Visual Effect check box, and
then adjust the values as shown in the following table:

13. Click OK to close the Chart Options dialog box.

14. Drag the right edge of the chart region to the 5.5-inch mark on the horizontal ruler and
the bottom edge to the 6-inch mark on the vertical ruler.

15. Click Run Report.

Your screen looks like this:

Enhancing Reports
An ad hoc report you create to quickly access to information doesn’t typically need to be for-
matted when you view it once and then discard it. However, if you plan to share your report
with others, you might decide to apply formatting to make the report easier to read and more
attractive. Report Builder provides formatting tools similar to Microsoft Office, which you can
use to quickly and easily to change the appearance of your report.

Property Value

Horizontal Rotation (Degrees) 5

Vertical Rotation (Degrees) 0

Perspective (%) 0

Wall Thickness (%) 10

6-2250-7.book Page 420 Tuesday, March 21, 2006 3:45 PM

Chapter 15: Creating Reports with Report Builder 421

In addition to modifying the appearance of your report, you can enhance the behavior of your
report by using other Report Builder features. For example, you can apply a filter to restrict the
information to display in the report. You can also add new information to your report by cre-
ating an expression that performs a calculation based on the information retrieved for your
report. These features allow you to create a wide variety of reports right from your browser
without the need to use the Visual Studio development environment.

Formatting a Report

Even though Report Builder is a simple reporting tool, you have many formatting options to
improve the appearance of your report. The Formatting toolbar is available for you to apply
standard word processing options, such as font, font size, and font color, among others. You
can also change the default text in the column headings or total rows.

In this procedure, you’ll rename column headings, change the text alignment and font size of
the column headings, specify a different color for a total row, and resize column widths.

Format a table report

1. In Report Builder, click the Open button on the toolbar, click No to decline saving the
chart report, select Reseller Sales in the Open Report dialog box, and then click Open.

2. Double-click the column header Country Region Name and change the text to Country.

3. Repeat the previous step to change State Province Name to State / Province, Total Order
Quantity to Order Quantity, and Total Sales Amount to Sales Amount.

You can override the column headings by typing a new heading directly in the cell.

4. Click the Country column header, and, while pressing Shift, click Sales Amount to select
all four column headers.

5. Click the Centered button on the Formatting toolbar, and then change Font Size to 10.

Using the Formatting toolbar, you can make changes to the text alignment, the font, and
also background and foreground colors. Alternatively, you can right-click a table cell and
click Format to open the Format dialog box.

6. Click the Total cell in the State / Province column, and, while pressing Shift, click the
last cell on the same row (in the Sales Amount column) to select a total of three cells.
Right-click one of these cells, click Format, click the Fill tab, and then select Light Yellow
(the third color from the left on the bottom row), and then click OK.

7. Position the cursor between Order Quantity and Sales Amount so that the cursor
changes shape, and then drag the cursor until the complete column header text for
Order Quantity can be seen without wrapping when you run the report (about 1.75
inches).

8. Resize the column header text for Sales Amount to approximately 1.25 inches wide.

6-2250-7.book Page 421 Tuesday, March 21, 2006 3:45 PM

422 Part IV: Delivering Reports

Your screen looks like this:

9. Click Run Report to view your report, and then click the Print Layout button on the
toolbar.

Your screen looks like this:

6-2250-7.book Page 422 Tuesday, March 21, 2006 3:45 PM

Chapter 15: Creating Reports with Report Builder 423

If you plan to print your report, you should check the layout first to make sure the mar-
gins and orientation of your report are set correctly. You can make changes to these set-
tings, if necessary, by selecting Page Setup from the File menu.

10. Click the Print Layout button again to return to the online view of your report.

Filtering a Report

Adding a filter to a report modifies the query that Report Builder generates by adding a
WHERE clause to restrict the data returned from the source database. You can optionally
include a prompt with the filter condition to make it easy for a user to create alternate views of
the report. Each time the filter values are changed, a new query executes.

In this procedure, you’ll apply one filter condition to prompt the user for one or more coun-
tries to include in the report and another filter condition without a prompt to limit the report
data to a specific year.

Filter a report

1. Click Filter.

You can navigate through the report model to select different entities using the Entities
list just as you did when building your report. In the Fields list, you select fields to
include as the filter criteria.

2. In the Fields list, double-click Country Region Name to add it as a filter condition.

3. Click the word Equals that appears next to Country Region Name, and then select In A
List to change the operator in the conditional expression that you are building.

4. Click (No Values Selected), and then select Canada and United States in the drop-down
list.

5. Click Geography Country Region Name and select Prompt in the pop-up menu.

6-2250-7.book Page 423 Tuesday, March 21, 2006 3:45 PM

424 Part IV: Delivering Reports

The Filter Data dialog box looks like this:

6. In the Entities list, click Dim Resellers, click Fact Reseller Sales, click Order Date, and
then double-click Calendar Year in the Fields list.

7. Select 2003 in the drop-down list to the right of Calendar Year.

The Filter Data dialog box now looks like this:

Notice the word and that appears between the two conditions. You can click this word to
change it to or.

6-2250-7.book Page 424 Tuesday, March 21, 2006 3:45 PM

Chapter 15: Creating Reports with Report Builder 425

8. Click OK to close the Filter Data dialog box.

Your screen looks like this:

Now only data for Canada and the United States for the orders placed in 2003 displays
in the report.

9. Click Next Page and scroll to the bottom of the page.

Your screen looks like this:

6-2250-7.book Page 425 Tuesday, March 21, 2006 3:45 PM

426 Part IV: Delivering Reports

The filter criteria definition is included in the report at the bottom of the second page.

10. In the Geography Country Region Name drop-down list, clear the Canada and United
States check boxes, select Australia and France, and then click View Report.

Tip If you add a filter to a report that you view only by using Report Builder, then you
can easily change the filter criteria by clicking Filter on the toolbar. However, if you pub-
lish the report to the report server, other users of this report will not be able to change
the filter values unless you include a prompt for the filter condition.

Adding Expressions

Ideally, any commonly used calculations should be added to the report model to ensure the
formulas are designed consistently. Adding calculations as expressions to the report model
also saves time for the user who won’t have to re-create the calculation each time it’s needed in
a new report. Nonetheless, you can easily create an expression when you need to enhance the
report data.

In this procedure, you’ll create an expression that calculates the number of distinct cities.

Add an expression to the table report

1. Click Design Report.

2. In the Explorer pane, select the Geography entity, and then click the New Field button
above the Fields list

3. In the Field Name textbox, type Count of Cities.

4. Click the Functions tab, and, in the Functions list, expand the Aggregate folder.

5. Double-click COUNTDISTINCT to add it to the Formula box.

6. Click the Fields tab, and then, in the Fields list, double-click City to add it to the For-
mula box.

6-2250-7.book Page 426 Tuesday, March 21, 2006 3:45 PM

Chapter 15: Creating Reports with Report Builder 427

The Define Formula dialog box looks like this:

7. Click OK to close the Define Formula dialog box.

Notice Count of Cities now appears in the Fields list and is indistinguishable from other
fields that are defined in the report model. However, it is important to understand that
the Count of Cities field is associated only with this report. It cannot be reused when cre-
ating new reports. If you want to use an expression in multiple reports, it is best to create
it in the report model.

8. Drag the Count of Cities field to the right edge of the table data region.

Notice the data values for the new field are left-justified. You can apply formatting to a
field that you add to a report.

9. Click the Count of Cities detail cell (the cell that contains 0), press the Shift key, and
then click the bottom cell in the same column to select all three data cells in the column.
Right-click the selected cells, and then click Format. On the Alignment tab, select Right
in the Horizontal drop-down list, and then click OK.

10. Click Run Report.

6-2250-7.book Page 427 Tuesday, March 21, 2006 3:45 PM

428 Part IV: Delivering Reports

Your screen looks like this:

11. Save the report, and then close Report Builder.

Report Builder is a great tool for providing ad hoc reporting capabilities to your user commu-
nity. The key to successful ad hoc reporting is a well-built report model that uses familiar busi-
ness terms to describe data and relationships in data. Now that you know how to interact with
a report model in Report Builder, you should better understand how your design decisions
when building the model will affect the user experience.

Chapter 15 Quick Reference

To Do this

Create a table report In Report Builder, start a new report, select the Table report layout, and then
drag attributes from the Fields list and drop in the Drag And Drop Column
Fields area of the table data region.

Create a matrix report In Report Builder, start a new report, select the Matrix (Cross-tab) report lay-
out, drag attributes from the Fields list and drop in both the Drag And Drop
Row Groups and the Drag And Drop Column Groups areas of the matrix data
region, and then drag numeric aggregate attributes to the Drag And Drop
Totals area.

Create a chart report In Report Builder, start a new report, select the Chart report layout, right-click
the chart data region, select a chart type or set chart options as desired, drag
attributes to the Drag And Drop Category Fields area and optionally to the
Drag And Drop Series Fields area, and then drag numeric aggregate at-
tributes to the Drag And Drop Data Value Fields area.

6-2250-7.book Page 428 Tuesday, March 21, 2006 3:45 PM

Chapter 15: Creating Reports with Report Builder 429

Create a clickthrough report In Report Builder, create a new report or open an existing report, click Run
Report on the toolbar, and then click any field in the report for which the cur-
sor changes to a hand.

Rename a column heading Click in the table cell and type a new heading in the cell.

Change the appearance of
text in a report

Select a cell or press Shift while selecting the first and last cell in a group, and
then click applicable buttons on the Formatting toolbar: Font Name, Font
Size, Bold, Italic, Underline, Left Justify, Centered, Right Justify, Text Color,
and Fill Color.

or

Right-click a cell, select Format, and then change settings in the Format dia-
log box.

Filter report data Click Filter, double-click an attribute to create a new filter expression, click
the comparison operator to change the default value from equals (if neces-
sary), and then select filter criteria. Click the attribute name and select
Prompt to create an interactive filter for the report.

Add an expression to a
report

In Report Builder’s design mode, select the entity in the Explorer list to con-
tain the expression, click New Field, type a name for the expression, click the
Functions tab, double-click a function, click the Fields tab, and then double-
click an attribute to complete the expression.

Publish a report to the
report server

Click Save on the Report Builder toolbar, name the report, and then click Save
in the Save Report dialog box.

To Do this

6-2250-7.book Page 429 Tuesday, March 21, 2006 3:45 PM

6-2250-7.book Page 430 Tuesday, March 21, 2006 3:45 PM

Part V
Programming Reporting Services

In this part:

Chapter 16: Report Authoring with Custom Development433

Chapter 17: Programming Report Server Management.471

Chapter 18: Building Custom Reporting Tools .499

In Part IV, “Delivering Reports,” you completed the final stage of the reporting life cycle
using Reporting Services. Now, in Part V, you begin the reporting life cycle again, but in
these chapters, you’ll look at how to author, manage, and deliver reports programmatically.
Because Reporting Services has an extensible architecture that uses an open schema for
reports and a published application programming interface (API), you can add as little or
as much customization as you need to fully support the information requirements of your
organization.

6-2250-7.book Page 431 Tuesday, March 21, 2006 3:45 PM

6-2250-7.book Page 432 Tuesday, March 21, 2006 3:45 PM

433

Chapter 16

Report Authoring with Custom
Development

After completing this chapter, you will be able to:

■ Use custom code in expressions.

■ Create a custom data processing extension.

■ Generate a report definition programmatically.

This chapter explores the types of authoring activities that you can customize. You’ll learn
how to reuse custom code in your report to handle complex functions—either as embedded
code or as a custom assembly. You’ll also learn how to build a custom data processing exten-
sion to read XML data and how to incorporate that data processing extension into a program
that builds a report.

Using Custom Code
When you need to use a complex expression many times in a report, it’s usually easier to write
the code once as a custom function, and then refer to it as needed. By following this practice,
you can minimize the number of places in the report requiring updates if you later want to
modify the expression. In particular, you can write procedural code in your custom functions
to take advantage of loops using FOR or WHILE, or conditional logic using IF…THEN or
CASE statements. You can reference custom functions anywhere that you can use an expres-
sion to control report item values, styles, and formatting.

One way that you can implement custom functions is to embed code in your report. However,
with this approach, only the report in which you embed the code has access to the custom
functions. Also, the embedded code must be written using Microsoft Visual Basic .NET.
Another approach with custom functions is to create a custom assembly that can then be ref-
erenced by any report. A custom assembly can be written using any language supported by
the Microsoft .NET Framework.

6-2250-7.book Page 433 Tuesday, March 21, 2006 3:45 PM

434 Part V: Programming Reporting Services

Adding Custom Code to a Report

By adding custom code to your report, you can build in additional functionality to expand
upon the features provided by Reporting Services. For example, a common issue that must be
dealt with in reports that use ratios is the prevention of divide-by-zero errors. In Chapter 5,
“Working with Expressions,” you created an expression to add a margin percentage to the
Product Sales and Profitability report. This expression used the following code in the detail
row: =ReportItems!Margin.Value/ReportItems!SalesAmount.Value, which, in this case, is
equivalent to =Fields!Margin.Value/Fields!SalesAmount.Value. Whether you use the
ReportItems or the Fields collection to build this expression, the risk is that a record in the
dataset will have a zero value for SalesAmount.

It’s a common programming practice to test a value for zero before you use it as a denominator
in a division operation. Your inclination to fix the expression would probably be to write some
code that looks like this: =IIf(Fields!SalesAmount.Value=0,0,Fields!Margin.Value
/Fields!SalesAmount.Value). However, Visual Basic .NET evaluates each argument individu-
ally—if one argument fails, the whole expression fails. (You can test this with =IIf(true,1,0
/0) to confirm that, even though the argument is not returned, the division by zero makes the
entire expression fail.)

One approach to solving this problem is to write a custom function to test the denominator
before performing the division. Using this method, you still use IF logic to test the denomina-
tor before performing the division, but you do it with procedural statements rather than in a
single function. This prevents the division if the denominator test fails. The code for this func-
tion is then embedded in the report definition and can be referenced by any expression in the
report.

In this procedure, you’ll embed code to prevent errors caused by dividing by zero.

Embed code in a report

1. Start Microsoft Business Intelligence Development Studio and open the Custom solu-
tion in the C:\Documents and Settings\<username>\My Documents\Microsoft Press
\rs2005sbs\chap16 folder.

2. In Solution Explorer, double-click the Order Profitability Embedded report.

6-2250-7.book Page 434 Tuesday, March 21, 2006 3:45 PM

Chapter 16: Report Authoring with Custom Development 435

3. Click the Preview tab to review the report, as shown here:

There are two rows in this report where the margin percentage is expressed as –Infinity.
This problem is caused because the margin percentage is calculated by dividing the mar-
gin amount by the sales amount, which in this case is zero.

4. Click the Layout tab, and then click Report Properties on the Report menu.

5. Click the Code tab and enter the following code in the Custom Code box:

Function Divide(Numerator as Double, Denominator as Double)

 If Denominator = 0 Then

 Return 0

 Else

 Return Numerator/Denominator

 End If

End Function

Tip Sometimes, you might want want an empty textbox instead of a textbox that dis-
plays 0 when the expression cannot perform the division. In this case, just change If
Denominator = 0 Then Return 0 to If Denominator = 0 Then Return Nothing.

6-2250-7.book Page 435 Tuesday, March 21, 2006 3:45 PM

436 Part V: Programming Reporting Services

The Report Properties dialog box looks like this:

6. Click OK, and then save the report.

Accessing Functions Using the Code Global Member

After embedding code in a report, you can access its functions by using the global member
Code. In any expression that you use to set a report item’s value or other properties, you
can reference the Code member and a specific function using the following syntax: Code
.method(arguments). The Divide function that you embedded in the report in the previous
procedure takes two arguments: a numerator and a denominator.

In this procedure, you’ll use the Divide function in ratio expressions.

Refer to embedded code in an expression

1. Right-click the margin percentage cell in the detail row of the table, and then click
Expression.

6-2250-7.book Page 436 Tuesday, March 21, 2006 3:45 PM

Chapter 16: Report Authoring with Custom Development 437

2. Replace the existing expression with the following code:

=Code.Divide(ReportItems!Margin.Value,ReportItems!SalesAmount.Value)

In this example, the Divide method will return zero if the ReportItems!Sales-
Amount.Value evaluates to zero. Otherwise, it will return the result of dividing the
numerator, ReportItems!Margin.Value, by the denominator, ReportItems!Sales-
Amount.Value.

3. Click OK.

4. Replace the ratio expressions in the remaining cells of the Margin % column, as shown
here:

5. Save and then preview the report.

Replace:

=ReportItems!Margin_Product.Value/
ReportItems!SalesAmount_Product.
Value

With:

=Code.Divide(ReportItems!
Margin_Product.Value,ReportItems!SalesAmount_Product.Value)

Replace:

=ReportItems!Margin_SubCategory.Value/
ReportItems!SalesAmount_SubCategory.
Value

With:

=Code.Divide(ReportItems!
Margin_SubCategory.Value,
ReportItems!
SalesAmount_SubCategory.Value)

Replace:

=ReportItems!Margin_Category.Value/
ReportItems!SalesAmount_Category.Value

With:

=Code.Divide(ReportItems!
Margin_Category.Value,
ReportItems!SalesAmount_Category.Value)

Replace:

=ReportItems!Margin_Total.Value/
ReportItems!SalesAmount_Total.Value

With:

=Code.Divide(ReportItems!
Margin_Total.Value,
ReportItems!SalesAmount_Total.Value)

6-2250-7.book Page 437 Tuesday, March 21, 2006 3:45 PM

438 Part V: Programming Reporting Services

The top of the report looks like this:

The problem with dividing by zero is now resolved.

6. Close the project.

Creating a Custom Class Library

Instead of limiting the scope of your custom functions to a single report, you can create your
own .NET assembly to which you can add the custom functions for reuse in any report. After
the assembly has been installed, you add a reference to the custom assembly in your report
definition, and then use your custom functions in expressions when building a report.

The first step in building a custom assembly is to create a class library. One benefit of creating
a class library for your custom functions is centralizing the code used in report expressions so
you can easily use the same function in multiple reports. Another benefit is the ability to use
the .NET language of your choice so you can leverage existing skills in your organization or
leverage code that you have written for other applications.

In this procedure, you’ll add custom functions to a class library to add custom conditional
formatting.

6-2250-7.book Page 438 Tuesday, March 21, 2006 3:45 PM

Chapter 16: Report Authoring with Custom Development 439

Note Steps and illustrations are provided for creating projects using Visual Basic .NET.
However, you can find C# code samples in the C:\Documents and Settings\<username>\My
Documents\Microsoft Press\rs2005sbs\chap16 folder and completed projects in the C:
\Documents and Settings\<username>\My Documents\Microsoft Press\rs2005sbs\Answers
\chap16 folder. To use code samples when following the procedures in this chapter, replace
VB with CS wherever you need to type a name or open a file.

To complete the procedures in this chapter, you must install either Visual Basic or Visual C# for
Microsoft Visual Studio 2005.

Create a class library

1. On the File menu, point to New, and then click Project.

Click the Visual Basic Projects folder, and then click Class Library.

Change the project name to AdventureWorks.VB.Extensions and specify its location as
C:\Documents and Settings\<username>\My Documents\Microsoft Press
\rs2005sbs\Workspace.

The New Project dialog box looks like this:

2. Click OK.

3. In Solution Explorer, right-click Class1.vb, click Rename, and then type Common-
Functions.vb.

4. Add the following code to the class definition (before the End Class statement):

Public Shared Function GetConditionColor(ByVal Value As Decimal, ByVal CautionValue As

Decimal, ByVal AlertValue As Decimal) As String

Select Case Value

Case Is > CautionValue

Return "Green"

Case Is > AlertValue

6-2250-7.book Page 439 Tuesday, March 21, 2006 3:45 PM

440 Part V: Programming Reporting Services

Return "Yellow"

Case Else

Return "Red"

End Select

End Function

This function takes three arguments—Value, CautionValue, and AlertValue. The first argu-
ment, Value, represents the current value of the cell and is compared to the other two
arguments to determine the color to be returned by the function. AlertValue and Cau-
tionValue are set by corresponding report parameters for which values are provided by
the user at run time. These values define the thresholds for alert conditions and for cau-
tion conditions respectively.

5. Save the file.

The document window looks like this:

6. Right-click the AdventureWorks.VB.Extensions solution in Solution Explorer, and then
click Build Solution.

By building the solution, the AdventureWorks.VB.Extensions.dll file is created in the
C:\Documents and Settings\<username>\My Documents\Microsoft Press\rs2005sbs
\Workspace\AdventureWorks.VB.Extensions\bin\Debug folder. You will reference
this .dll file in reports in which you want to use this custom function, but first, you
need to deploy the file so that Report Server and Report Designer can access the cus-
tom function.

6-2250-7.book Page 440 Tuesday, March 21, 2006 3:45 PM

Chapter 16: Report Authoring with Custom Development 441

7. Copy the AdventureWorks.VB.Extensions.dll assembly from the C:\Documents and
Settings\<username>\My Documents\Microsoft Press\rs2005sbs\Workspace
\AdventureWorks.VB.Extensions\Debug\bin folder to the following locations:

Reporting Services requires custom assemblies to be placed in a common directory with
their own assemblies. This means you need to place your assembly’s .dll file in the bin
folder of Report Server and in the Common7\IDE\PrivateAssemblies folder of Visual
Studio, as shown in the table above.

Using Functions from a Custom Assembly

You need to add a reference to your custom assembly in the report definition before you can
use its custom functions in expressions in the report. You could add a <CodeModules> element
to the report definition manually (or programmatically) to add this reference. An easier way,
however, is to update the References property of the report.

To use a custom function in an expression, you need to reference both the namespace and the
class name, and pass any arguments required by the function. You can do so by calling the
function from any area that accepts an expression. Rather than use Report Designer, you can
replace expressions with function calls directly in the XML representation of the report defi-
nition. Because arguments passed to a function can be the result of any expression, you have
a lot of flexibility in creating arguments. For example, you can create a dynamic argument
whose value can be changed at run time if you use a report parameter as an argument for your
custom function.

In this procedure, you’ll call a custom function from your custom assembly that is referenced
in a report.

Call a function from a custom assembly

1. In Visual Studio, open the Custom solution in the C:\Documents and Settings
\<username>\My Documents\Microsoft Press\rs2005sbs\chap16 folder.

2. In Solution Explorer, double-click the Order Profitability Custom Assembly report.

3. Click the Preview tab.

For this component Copy to this location

Report Server C:\Program Files\Microsoft SQL Server\MSSQL.3\Reporting
Services\ReportServer\bin

Report Designer C:\Program Files\Microsoft Visual Studio 8\Common7\IDE
\PrivateAssemblies

6-2250-7.book Page 441 Tuesday, March 21, 2006 3:45 PM

442 Part V: Programming Reporting Services

The top of the report looks like this:

Right now, the margin percentage value is displayed in red when the value is below 15%
and black when the value is equal to or greater than 15%. The Color property for each
cell in the Margin % column uses an expression to determine which color to use. Now,
you will replace this expression to allow the report user to customize thresholds for
exceptions for two levels—Alert and Caution. Margin percentages below the threshold
defined for the Alert level will be displayed in red, and margin percentages between the
Alert level and the Caution level will be displayed in yellow. All other margin percent-
ages will be displayed in green.

The GetConditionColor function that you added to the custom assembly in the previous
procedure can be used to compare the value of the current cell to the values that the
user assigns to the AlertValue and CautionValue parameters. These parameters and their
default values are already defined in the report. To use the function, you first need to ref-
erence the custom assembly that contains it.

4. Click the Layout tab, and then click Report in the Properties items drop-down list at the
top of the Properties window.

5. Click the References property, and then click the ellipsis button in the property box.

6. Click the ellipsis button in the Edit References dialog box, and then click the Browse tab
in the Add Reference dialog box.

7. Navigate to the C:\Program Files\Microsoft Visual Studio 8\Common7\IDE\Private-
Assemblies folder, select the AdventureWorks.VB.Extensions.dll file, and then click Add
(or double-click the file name).

6-2250-7.book Page 442 Tuesday, March 21, 2006 3:45 PM

Chapter 16: Report Authoring with Custom Development 443

The Add Reference dialog box looks like this:

8. Close all dialog boxes by clicking OK in each.

Now that the reference to the assembly is associated with the report, you are ready to
call a function in the assembly using an expression in your report.

9. Save the report.

10. In Solution Explorer, right-click the Order Profitability Custom Assembly report, and
then click View Code.

The XML version of the report is displayed:

6-2250-7.book Page 443 Tuesday, March 21, 2006 3:45 PM

444 Part V: Programming Reporting Services

11. Search through the XML to find the <CodeModules> element.

This element references the assembly name, its version number, culture definition, and
public key information. This element is required to identify the assembly.

Important If you create a report definition programmatically and use functions from
a custom assembly in the report, be sure to include the <CodeModules> element and
the appropriate attributes. Reports that reference the original version of the assembly
won’t work if a change to a custom assembly results in an incremented version number.
To resolve the problem, you need to update the version number in the <CodeModules>
element and then republish the reports. See the topic, “Deploying a Custom Assembly,”
in Reporting Services Books Online for alternative solutions to managing version
changes to custom assemblies.

12. Press Ctrl+F, type ''Red'' in the Find and Replace dialog box, and then click Find Next.

The first occurrence of ''Red'' is found in the <Color> element that belongs to the final
textbox of the detail row.

13. Replace the expression in the <Color> element with the following code:

=AdventureWorks.VB.Extensions.CommonFunctions.GetConditionColor(Me.Value,Parameters!Ca

utionValue.Value,Parameters!AlertValue.Value)

Your screen looks like this:

When you pass arguments to the function in the custom assembly, you can use a reference
to a member of a global collection in your report, such as Parameters!CautionValue.Value.

6-2250-7.book Page 444 Tuesday, March 21, 2006 3:45 PM

Chapter 16: Report Authoring with Custom Development 445

The CautionValue and AlertValue parameters have already been added to the report with
default values of .20 and .10, respectively.

14. In the Find and Replace dialog box, click Find Next to find the next occurrence of the
string, and then replace the expression in the <Color> element with the same code used
in the previous step. Repeat this step three more times so that a total of five <Color> ele-
ments contain the custom function.

15. Close the Find and Replace box and then save and close the XML version of the report.

Preview the report.

16. The top of the report looks like this:

Notice that in the first detail row, the margin percentage is displayed in red because the
value is below the default Alert threshold of .1, or 10%. In the second detail row, the
margin percentage is displayed in yellow because the value is between the Alert and the
Caution thresholds.

17. Type .15 as the Caution < parameter value.

18. Click View Report to preview the report and scroll to the bottom of the page.

All values between the Alert and Caution thresholds—that is, between 10% and 15%—are
displayed in yellow. There is one value displayed in green because the value is not within
the range defined for Alert or Caution. If you scroll to the top of the report, you can see
one value below the Alert threshold displayed in red.

By combining a custom function with parameters, you can allow the user to provide the
values used to set properties in the report. If you don’t want to use parameter values,
simply replace the applicable arguments in the expression that is used to call the custom
function with constant values or expressions based on conditions elsewhere in the
report. Because the function is in a custom assembly, you can reuse this logic in any
report that includes a reference to the assembly.

19. Close the project.

6-2250-7.book Page 445 Tuesday, March 21, 2006 3:45 PM

446 Part V: Programming Reporting Services

Creating Custom Data Processing Extensions
As you explored the stages of the reporting life cycle throughout the earlier chapters of this
book, you learned about four different types of extensions used by Reporting Services—data
processing extensions, security extensions, rendering extensions, and delivery extensions.
Of these four extensions, the easiest one to develop is a data processing extension. If you’ve
created a .NET data provider, you have a good foundation to get started, because you can
easily extend a .NET data provider with Reporting Services interfaces for use in your report-
ing environment.

Note A thorough discussion of writing custom extensions could be a whole book in itself.
This chapter focuses on the key issues you need to be aware of when developing and using a
data processing extension. Over time, you can expect to see many vendors produce custom
extensions that you can integrate into your Reporting Services environment. If your require-
ments are sufficiently unique to require a custom extension, you can start learning more by
reviewing the examples provided in this chapter and in Reporting Services Books Online.

One reason that you might need to write your own data processing extension is to use a file
(such as an XML file) that you receive from a third party as a data source. XML files are rapidly
becoming the structure of choice for exchanging data, so you might find it practical to develop
a data processing extension to read XML data into reports. Reporting Services already pro-
vides an XML data processing extension, but in this section, you learn how to construct and
implement a very simple XML data processing extension to better understand the process of
building one. You can, of course, extend the code in this data-processing extension to add
more sophisticated functionality.

To create a custom data processing extension, you build an assembly that defines how
Reporting Services connects to a data source, sends a command to the data source, and
retrieves data from the data source. You start by defining a namespace, to which you add the
classes that contain the constructors, properties, and methods that are used by Reporting
Services to interact with the data source. Then, you build classes that include specific name-
spaces and implement the required interfaces, as shown in the following table:

Object Namespaces Interfaces

Connection System

Microsoft.ReportingServices.DataProcessing

Microsoft.ReportingServices.Interfaces

IDbConnectionExtension

Command System

System.Component.Model

Microsoft.ReportingServices.DataProcessing

IDbCommand

6-2250-7.book Page 446 Tuesday, March 21, 2006 3:45 PM

Chapter 16: Report Authoring with Custom Development 447

To deploy your custom data processing extension, you move the assembly to the Reporting
Services interface directories and configure Reporting Services to use the extension and to
grant FullTrust permission to your extension.

Assigning a Namespace

You need to assign a namespace to your custom data processing extension so you can
uniquely identify your extension in your Reporting Services implementation. When you con-
figure Reporting Services to use your extension, you include this namespace. You also refer-
ence this namespace when using the extension in custom applications, such as the report
producer application that you build later in this chapter.

In this procedure, you’ll assign a namespace to the custom data processing extension.

Assign a namespace to the assembly

1. Using Visual Studio, open the XMLDataExtensionVB solution located in the
C:\Documents and Settings\<username>\My Documents\Microsoft Press
\rs2005sbs\chap16\XMLDataExtensionVB folder.

2. On the Project menu, click XMLDataExtensionVB Properties.

3. Change both the Assembly Name and the Root Namespace to AdventureWorks
.VB.ReportingServices.XMLDataExtension.

Data reader System

System.Collections

System.Globalization

System.IO

System.Security

System.Security.Principal

Microsoft.ReportingServices.DataProcessing

IDataReader

Parameter System

Microsoft.ReportingServices.DataProcessing

IDataParameter

ParameterCollection System

System.Collections

System.Globalization

Microsoft.ReportingServices.DataProcessing

ArrayList

IDataParameterCollection

Transaction System

Microsoft.ReportingServices.DataProcessing

IDbTransaction

Object Namespaces Interfaces

6-2250-7.book Page 447 Tuesday, March 21, 2006 3:45 PM

448 Part V: Programming Reporting Services

The dialog box looks like this:

The assembly name is the name assigned to the .dll file that you place in the Reporting
Services application directories like you did when you deployed a custom assembly ear-
lier in this chapter. The namespace uniquely identifies the data processing extension to
Reporting Services.

4. Choose Save All from the File Menu and close the tab.

Creating a Connection Object

Your custom data processing extension needs a class that allows Report Designer to create a
connection object. At the very least, you implement the IDbConnection interface to get or set
the properties of a connection, such as the connection string. This interface also opens or
closes the connection and defines a time-out value for the connection attempt. If you need to
support the use of credentials, implement the IDbConnectionExtension interface. You can then
pass credentials to the connection using integrated security or a specific user name and pass-
word that is passed from the user interface. When you inherit either of these interfaces, you
must implement all the inherited members whether you need them or not, and then you can
add functionality to specific members as required by your data processing extension.

Because IDbConnection inherits from IExtension, you must also implement the inherited IEx-
tension members. This interface is used to display a localized name for the extension in the
user interface, such as Report Designer or Report Manager. It can also be used to access con-
figuration information, which you can add as a child element to the <Extension> element in
the configuration file.

6-2250-7.book Page 448 Tuesday, March 21, 2006 3:45 PM

Chapter 16: Report Authoring with Custom Development 449

For the simplest possible data processing extension, all you need to add to your connection
class is a string for the m_locname variable. You also must add a reference to Microsoft
.ReportingServices.Interfaces.dll so the compiler can access the interfaces that you will be using
in your data processing extension. Then, you need to update the CreateCommand() method to
return a command object from your command class. If your data source does not support trans-
actions, as is the case with an XML file, the BeginTransaction() method should throw an excep-
tion. Otherwise, you will need to insert code in this method to initiate a transaction. Finally, if
you want to implement a configurable extension—that is, an extension with settings maintained
in a Reporting Services configuration file—you can add code to the SetConfiguration() method to
retrieve the settings from the configuration file.

In this procedure, you’ll add a reference to Microsoft.ReportingServices.Interfaces.dll, update
the namespace for the XMLConnection class, and initialize the localized name for the data
extension.

Update the XMLConnection class

1. In Solution Explorer, right-click the name of the project, and then click Add Reference.

2. Click the Browse tab, and then navigate to Microsoft.ReportingServices.Interfaces.dll,
which by default is located in C:\Program Files\Microsoft SQL Server\MSSQL.3
\Reporting Services\ReportServer\bin. Select the file, click Open (or double-click the
file name), and then click OK.

3. In Solution Explorer, double-click the XMLConnection file.

4. Modify line 11 of the file to add the localized name for the data processing extension
between the sets of quotation marks: Adventure Works XML Provider (VB .NET).

The XMLConnection.vb file looks like this:

6-2250-7.book Page 449 Tuesday, March 21, 2006 3:45 PM

450 Part V: Programming Reporting Services

Note The name that you supply here will appear in the list of available data providers
when you create a data source in Report Designer or Report Manager.

5. Take a moment to review the code in this class, and then save the file.

Scroll down in this file and notice the CreateCommand() method in this class. This
method is used to create and return a command object that is specific to the connection.
The command object to be created in this data processing extension is an instantiation
of the XMLCommand class, which you will review in the next procedure.

Creating a Command Object

Your custom data processing extension also needs a class to create a command object that
sends a request to the data source. This command object can include parameters passed from
Reporting Services. The command is executed against the data source and the results are
returned as a data reader object.

In this class, you must implement the IDbCommand interface. This interface is responsible for
managing the properties of a command, such as the command text and time-out value for the
command execution. It is also used to create a parameter object or to cancel command execu-
tion. The code in the ExecuteReader() method is specific to your implementation and is the
only method that you have to update for your extension. This method is used to execute the
command and put the results into a new data reader object.

There are several references to other classes that you might need to update in this class. The
m_parameters variable and the Parameters property both reference the parameters collection
class. The Transaction property references the transaction class and the CreateParameter()
method references the parameter class.

You can optionally implement the IDbCommandAnalysis interface if you want to include a
prompt for parameters when previewing a report with your custom data processing extension
in Report Designer. However, it isn’t necessary if your extension doesn’t support parameters.

In this procedure, you’ll review the code for the ExecuteReader() method.

Review the XMLCommand class

1. In Solution Explorer, open the XMLCommand file to review the program code.

2. Find the ExecuteReader() method toward the bottom of the file.

The code for ExecuteReader() method looks like this:

Public Overloads Function ExecuteReader() As IDataReader

'

'* ExecuteReader should retrieve results from the data source

'* using a valid and open connection,

6-2250-7.book Page 450 Tuesday, March 21, 2006 3:45 PM

Chapter 16: Report Authoring with Custom Development 451

'* and return a DataReader that allows the user to process

'* the results.

If m_connection Is Nothing OrElse m_connection.State <> System.Data.ConnectionState.Open

Then

Throw New InvalidOperationException("Connection must be valid and open.")

End If

' Execute the command.

Dim reader As New XMLDataReader(Me, m_connection)

' This method instantiates a data reader object by passing the current connection

' and command objects

Return reader

End Function 'ExecuteReader

Note If you create your own data processing extension, you will need to factor in
which arguments, if any, to pass when creating the data reader object. For example, the
File Share data processing extension included in the Reporting Services Samples passes
only the command text to the data reader. You can find this sample in the C:\Program
Files\Microsoft SQL Server\90\Samples\Reporting Services\Extension Samples\FsiData
Extension Sample folder. There is a C# version and a Visual Basic .NET version of the sam-
ple data processing extension.

3. Save the file.

Creating a Data Reader Object

The next class in your custom data processing extension creates a data reader object to store
the results returned when a command is executed against a data source. The IDataReader
interface that you must implement in this class allows you to read a result set and gives you
access to the column types, column names, and values for each row in the result set. Report
Designer uses the methods of the data reader class to build the list of fields that you use to
place in a report. You might need to add other namespaces if you plan to implement addi-
tional interfaces in your data reader class. For example, in the XMLDataReader class that you
review in the next procedure, the System.XML and System.XML.XPath namespaces are added
to support an XPath query. In addition to placing code specific to your data processing exten-
sion in the constructor, you need to update the Read() method to retrieve the values from the
data source for the fields.

In this procedure, you’ll update the namespace for the data reader class and add code to con-
struct a data reader object.

6-2250-7.book Page 451 Tuesday, March 21, 2006 3:45 PM

452 Part V: Programming Reporting Services

Update and review the XMLDataReader class

1. In Solution Explorer, open the XMLDataReader file.

2. Using Notepad, open the XMLDataReaderConstructorVB.txt file in the C:\Documents
and Settings\<username>\My Documents\Microsoft Press\rs2005sbs\chap16 folder.

3. Copy the contents of the .txt file in Notepad and paste it into the XMLDataReader class
in Visual Studio at line 31, replacing the placeholder comment on that line.

The code for XMLDataReader constructor looks like this:

Friend Sub New(ByVal cmdText As XMLCommand, ByVal connection As XMLConnection)

' This data reader constructor receives the connection and command objects

' as arguments

Dim dataSource As String = Nothing

' Parse the connection string to separate the key/value pair.

' The expected syntax of the connection string is

' data source=path/filename.

' Validate the connection string to ensure that it contains the

' expected elements in the proper sequence and that the file

' exists in the specified location.

Dim connectionPieces As String() = Split(connection.ConnectionString, "=")

If (connectionPieces(0).Trim().ToUpper().Equals("DATA SOURCE")) Then

 dataSource = connectionPieces(1)

Else

 Throw New Exception ("Connection string is invalid")

End If

If dataSource Is Nothing Then

 Throw New Exception("File path missing in connection string")

End If

If File.Exists(dataSource) = False Then

 Throw New Exception("File " + dataSource + " doesn't exist")

End If

' Isolate the starting node from the command text.

' The expected syntax of the command text is

' StartNode; field1, field2, ... field N.

' The StartNode is the path from the root element to the element

' containing the innermost detail row to be returned in the result set.

' The fields are the attributes of the element specified by the StartNode.

' A field can also be a path combined with an element or attribute name.

Dim args As String() = Split(cmdText.CommandText, ";")

Dim startNode As String = args(0)

6-2250-7.book Page 452 Tuesday, March 21, 2006 3:45 PM

Chapter 16: Report Authoring with Custom Development 453

' Build the field list and initialize the field metadata arrays

' Metadata is used to generate a list of fields for building the report.

Dim fields As String() = Split(args(1), ",")

m_fieldCount = fields.Length

ReDim m_names(m_fieldCount - 1)

ReDim m_nodes(m_fieldCount - 1)

ReDim m_types(m_fieldCount - 1)

ReDim m_columns(m_fieldCount - 1)

' Prepare objects for an XPath query.

' An XPathDocument is created as a read-only cache for the specified XML file.

' XPathNavigator and XPathNodeIterator objects support the traversal of the nodes

' in the XML document.

Dim doc As XPathDocument = New XPathDocument(dataSource)

Dim nav As XPathNavigator = doc.CreateNavigator()

m_iterator = nav.Select(startNode)

Dim clone As XPathNodeIterator = m_iterator.Clone()

clone.MoveNext()

' Populate the field metadata arrays

Dim i As Integer = 0

Dim field As String

For Each field In fields

 Dim fieldClone As XPathNodeIterator = clone.Current.Select(field)

 fieldClone.MoveNext()

 m_names(i) = fieldClone.Current.Name

 m_types(i) = fieldClone.Current.Value.GetType()

 m_nodes(i) = field

 i += 1

Next

End Sub 'New

Note In this example, the syntax used for the connection string and for the command
text is implementation-specific. Users of this data processing extension will need to
understand how to construct the connection string and command text properly. When
building your own custom data processing extension, you should use the standard syn-
tax, if available, for your data provider, and code the data reader constructor to parse
these strings accordingly.

4. Take a moment to review the code in this class, and then save the file.

Notice the Read() method that is called by Reporting Services to retrieve the values
from the data source. Like the data reader constructor code, the code in this method
is implementation-specific.

6-2250-7.book Page 453 Tuesday, March 21, 2006 3:45 PM

454 Part V: Programming Reporting Services

Understanding Required Classes for a Data Processing Extension
So far, you’ve reviewed and updated three classes for the XML custom data processing
extension. Because this extension needs only to connect to a data source, send a com-
mand to a data source, and retrieve data from a data source, these three classes are the
only ones where implementation-specific code needs to be placed. However, to satisfy
the data processing interface requirements for Reporting Services, you also need to add
a parameter, parameter collection, and transaction class to your assembly. These classes
are already added to the solution used in this chapter and include the boilerplate code
in the methods that will support a basic data processing extension that doesn’t use
parameters or transactions.

If, however, your data source supports parameters in a query, you can add code to the
parameter and parameter collection classes to incorporate parameters into the com-
mand execution. You can find more information about the IDataParameter and IData-
ParameterCollection interfaces in Reporting Services Books Online. Similarly, if your data
source supports transactions, you might need to add code to the transaction class that
needs to implement the IDbTransaction or IDbTransactionExtension interfaces, which are
also explained in Reporting Services Books Online.

Deploying a Custom Data Processing Extension

After all the required classes are created, you are ready to deploy your custom data processing
extension. You start by building the solution to create the assembly’s .dll file, which you then
move to the Report Server and also to the client workstation using Report Designer. Report
Server requires the .dll file to be placed in the C:\Program Files\Microsoft SQL Server
\MSSQL.3\Reporting Services\ReportServer\bin folder, whereas Report Designer requires
the .dll file to be placed in the C:\Program Files\Microsoft Visual Studio 8\Common7\IDE
\PrivateAssemblies folder.

For Reporting Services to use your custom data processing extension, you need to reference
the extension in the Report Server and Report Designer configuration files. Both configura-
tion files require an <Extension> element in which you provide a reference to the extension’s
namespace and Connection class as well as the full name of the extension’s assembly. In addi-
tion, you need to associate the generic query designer with the extension as a <Designer> ele-
ment in the Report Designer configuration file. Then, you need to grant FullTrust permission
to the extension by adding a corresponding code group to the Reporting Services policy con-
figuration files, Rssrvpolicy.config and Rspreviewpolicy.config.

In this procedure, you’ll deploy the XML data processing extension to the Reporting Services
environment.

6-2250-7.book Page 454 Tuesday, March 21, 2006 3:45 PM

Chapter 16: Report Authoring with Custom Development 455

Deploy a custom data processing extension

1. In Solution Explorer, right-click the name of the solution, and then click Build Solution.

If you performed the previous procedures correctly, the solution successfully builds.

Note If you encounter a problem that you cannot resolve, you can open a com-
pleted Visual Basic .NET solution in the C:\Documents and Settings\<username>\My
Documents\Microsoft Press\rs2005sbs\Answers\chap16\XMLDataExtensionVB folder.
If you prefer, you can open a completed C# solution in the C:\ Documents and
Settings\<username>\My Documents\Microsoft Press\rs2005sbs\Answers\chap16
\XMLDataExtensionCS folder. Build the selected solution so that you can perform the
following steps successfully.

2. Copy the AdventureWorks.VB.ReportingServices.XMLDataExtension.dll from the
C:\Documents and Settings\<username>\My Documents\Microsoft Press\rs2005sbs
\chap16\XMLDataExtensionVB\bin folder to the following locations:

3. Close Visual Studio.

Important In order to use the data processing extension, you need to use a new
instance of Visual Studio. Otherwise, Report Designer will not recognize the new data
processing extension.

4. Make a backup copy of the RSReportDesigner.config file in the C:\Program Files
\Microsoft Visual Studio 8\Common7\IDE\PrivateAssemblies folder, and then edit
the RSReportDesigner.config file, adding the following code as a child to the <Data>
element:

<Extension Name = "XML_VB"

Type="AdventureWorks.VB.ReportingServices.XMLDataExtension.XMLConnection,AdventureWork

s.VB.ReportingServices.XMLDataExtension"/>

5. Continue editing the RSReportDesigner.config file, adding the following code as a child
to the <Designer> element:

<Extension Name="XML_VB"

Type="Microsoft.ReportingServices.QueryDesigners.GenericQueryDesigner,Microsoft.Report

ingServices.QueryDesigners"/>

For this component Copy to this location

Report Server C:\Program Files\Microsoft SQL Server\MSSQL.3\Reporting
Services\ReportServer\bin

Report Designer C:\Program Files\Microsoft Visual Studio 8\Common7\IDE
\PrivateAssemblies

6-2250-7.book Page 455 Tuesday, March 21, 2006 3:45 PM

456 Part V: Programming Reporting Services

The <Data> and <Designer> elements of the RSReportDesigner.config file look like this:

6. Save and close the file.

7. Make a backup copy of the RSReportServer.config file in the C:\Program Files
\Microsoft SQL Server\MSSQL.3\Reporting Services\ReportServer folder, and then
edit the RSReportServer.config file, adding the following code as a child to the <Data>
element:

<Extension Name = "XML_VB"

Type="AdventureWorks.VB.ReportingServices.XMLDataExtension.XMLConnection,AdventureWork

s.VB.ReportingServices.XMLDataExtension"/>

6-2250-7.book Page 456 Tuesday, March 21, 2006 3:45 PM

Chapter 16: Report Authoring with Custom Development 457

The <Data> element of the RSReportServer.config file looks like this:

8. Save and close the file.

9. Make a backup of the Rssrvpolicy.config file, which is found in the C:\Program Files
\Microsoft SQL Server\MSSQL.3\Reporting Services\ReportServer folder, and then
edit the Rssrvpolicy.config file by adding the following code just below the code group
with a <Url> attribute of "$CodeGen$/*":

<CodeGroup class="UnionCodeGroup"

 version="1"

 PermissionSetName="FullTrust"

 Name="XML_VB_CodeGroup"

 Description="Code group for my VB XML data processing extension">

 <IMembershipCondition class="UrlMembershipCondition"

 version="1"

 Url="C:\Program Files\Microsoft SQL Server\MSSQL.3\Reporting

Services\ReportServer\bin\AdventureWorks.VB.ReportingServices.XMLDataExtension.dll"

 />

</CodeGroup>

6-2250-7.book Page 457 Tuesday, March 21, 2006 3:45 PM

458 Part V: Programming Reporting Services

The <Code Group> element of the Rssrvpolicy.config file looks like this:

10. Save and close the file.

11. Make a backup of the Rspreviewpolicy.config file, located at C:\Program Files\Microsoft
Visual Studio 8\Common7\IDE\PrivateAssemblies, and then add the following code
group just below the last code group that you encounter in this file:

<CodeGroup class="UnionCodeGroup"

 version="1"

 PermissionSetName="FullTrust"

 Name="XML_VB_CodeGroup"

 Description="Code group for my VB XML data processing extension">

 <IMembershipCondition class="UrlMembershipCondition"

 version="1"

 Url="C:\Program Files\Microsoft Visual Studio

8\Common7\IDE\PrivateAssemblies\AdventureWorks.VB.ReportingServices.XMLDataExtension.d

ll"

 />

</CodeGroup>

Note There should be two </CodeGroup> tags below the code group that you
added for this data extension. Be sure to place the new code group correctly in this file.

12. Save and close the file.

In this procedure, you’ll test the deployment of the custom data processing extension in
Report Designer.

6-2250-7.book Page 458 Tuesday, March 21, 2006 3:45 PM

Chapter 16: Report Authoring with Custom Development 459

Test the data processing extension

1. In Business Intelligence Development Studio, point to New on the File menu, and then
click Project.

2. Click Report Server Project in the Business Intelligence Projects folder to create a
project named XMLDataVB located in the C:\Documents and Settings\<username>
\My Documents\Microsoft Press\rs2005sbs\Workspace folder, and then click OK.

3. Right-click the Reports folder in Solution Explorer, point to Add, and then click New
Item.

4. Click Report, type a name for the report, XMLdata.rdl, and then click Add.

5. Click <New Dataset…> in the Dataset drop-down list, select the data processing exten-
sion that you added, and then enter the following connection string: data source=C:
\Documents and Settings\<username>\My Documents\Microsoft Press\rs2005sbs
\chap16\Purchase Order Details.xml.

The Shared Data Source dialog box looks like this:

6. On the Credentials tab of the Data Source dialog box, click Use Windows Authentica-
tion (Integrated Security), and then click OK.

7. In the Generic Query Designer text box, type the following query string:

/PurchaseOrders/PurchaseOrder/items/item;description,qty,price,../../@PO_id,../../

@PO_date,/PurchaseOrders/Customers/Customer

As explained earlier in this chapter, the expected syntax of the command text for this
implementation is StartNode; field1, field2, ..fieldN. For example, the Purchase
Order Details.xml file, located at C:\Documents and Settings\<username>\My
Documents\Microsoft Press\rs2005sbs\chap16, that will be used to test this extension

6-2250-7.book Page 459 Tuesday, March 21, 2006 3:45 PM

460 Part V: Programming Reporting Services

contains purchase order information where the most detailed data is the line item
information that includes product, quantity, and price information. This information
is contained on the <item> node, so the StartNode for this query includes the full node
path from the root node to the <item> node.

The structure of the XML file looks like this:

A semicolon (;) is used as a delimiter between the StartNode and the fields to be retrieved
by the query. Then the field names are listed. The fields must correspond to an element
or an attribute in the XML file and are separated by a comma. Notice that the @ symbol
is used as a prefix for an attribute name, whereas an element name has no prefix. Also,
if a field comes from a different node, you can prefix the field with the absolute path or
the relative path from the StartNode.

8. Click Run on the Dataset toolbar.

6-2250-7.book Page 460 Tuesday, March 21, 2006 3:45 PM

Chapter 16: Report Authoring with Custom Development 461

Your screen looks like this:

When data from the XML file is displayed in the results pane of the Generic Query
designer, you have successfully installed the data processing extension.

9. Click the Layout tab, then display the Datasets window. (Click Datasets in the View
menu if you’ve closed this window.)

Your screen looks like this:

6-2250-7.book Page 461 Tuesday, March 21, 2006 3:45 PM

462 Part V: Programming Reporting Services

The Datasets window is populated with a list of the fields from the dataset that you use
to build a report by placing these fields in freestanding textboxes or data regions. You
can also use the XML data processing extension to build reports by using other tools
that can access the Reporting Services API, as you’ll learn in the next section.

Generating Report Definition Language
You learned in Part II, “Authoring Reports,” how to use Report Designer to create report def-
initions that are published to the Report Server for user consumption. Because Reporting
Services is an extensible platform, you aren’t restricted to using Report Designer to create
reports. As a report producer application, the goal of Report Designer is to create a file that
describes a report using Report Definition Language (RDL). Although building a custom
application that matches Report Designer feature for feature doesn’t make sense, you might
have a need to automate the process of creating RDL files. You can do so by creating a simple
report producer application to reproduce a specific layout and formatting that you know in
advance. Before you begin to develop such an application, you should have a good under-
standing of the RDL schema.

Regardless of the specific implementation of your application, your RDL generator needs to be
able to perform some common tasks. If you will incorporate metadata (such as column
names) from your data source in your report, you will need to add a data source connection
and command text so the application can query the data to get a current list of fields. You can
then use this list of fields when generating the RDL (or you can hard-code field names) for a
report.

Creating a Console Application

You can build an RDL generator into any type of application, but, for simplicity, you will create
a console application in this chapter. All code in this application is contained in a single RDL-
Generator class. You can also find a sample RDL generator described in a Reporting Services
tutorial that you can find in SQL Server Books Online. In this version of the RDL generator,
you’ll use the XML custom data processing extension that you created earlier in this chapter.

In this procedure, you’ll create a console application based on a template for an RDLGenerator
class.

Create a console application with an RDLGenerator class

1. On the File menu, point to New, and then click Project.

2. Click the Visual Basic Projects folder, and then click Console Application.

3. Change the project name to AdventureWorksRDLGenerator, specify its location as
C:\Documents and Settings\<username>\My Documents\Microsoft Press
\rs2005sbs\Workspace, and then click OK.

6-2250-7.book Page 462 Tuesday, March 21, 2006 3:45 PM

Chapter 16: Report Authoring with Custom Development 463

4. In Solution Explorer, right-click the AdventureWorksRDLGenerator project icon, point
to Add, and then click Add Class.

5. Type a name for the class, RDLGenerator.vb, and then click Add.

6. Replace the contents of the file with the contents of the RDLGeneratorClassVB.txt file in
the C:\Documents and Settings\<username>\My Documents\Microsoft Press
\rs2005sbs\chap16 folder, shown here:

Imports System

Imports System.Collections

Imports System.Data

Imports System.Data.SqlClient

Imports System.IO

Imports System.Text

Imports System.Xml

Imports AdventureWorks.VB.ReportingServices.XMLDataExtension

Namespace AdventureWorksRDLGenerator

 Class RDLGenerator

 Private m_connection As XMLConnection

 Private m_connectString As String

 Private m_commandText As String

 Private m_fields As ArrayList

 Public Shared Sub Main()

 Dim myRDLGenerator As New RDLGenerator

 myRDLGenerator.Run()

 End Sub 'Main

 Public Sub Run()

 Try

 ' Call methods to create the RDL

 Me.OpenConnection()

 Me.GenerateFieldsList()

 Me.GenerateRDL()

 Console.WriteLine("RDL file generated successfully.")

 Catch exception As Exception

 Console.WriteLine(("An error occurred: " + exception.Message))

 Finally

 ' Close the connection string

 m_connection.Close()

 End Try

 End Sub 'Run

 Public Sub OpenConnection()

 End Sub 'OpenConnection

6-2250-7.book Page 463 Tuesday, March 21, 2006 3:45 PM

464 Part V: Programming Reporting Services

 ' TODO: Open a connection to the sample database

 Public Sub GenerateFieldsList()

 End Sub 'GenerateFieldsList

 ' TODO: Generate a list of fields for a report query

 Public Sub GenerateRDL()

 End Sub 'GenerateRdl

 End Class 'RdlGenerator ' TODO: Generate RDL using XmlTextWriter

End Namespace 'AdventureWorksRDLGenerator

This code currently has placeholders for functions that you will add in subsequent
procedures.

7. In Solution Explorer, double-click the Module1.vb file

8. In main method, enter the code shown here:

Dim myRDLGenerator As New AdventureWorks.RDLGenerator myRDLGenerator.Run().

9. In Solution Explorer, right-click the name of the project, click Add Reference, click the
Browse tab, navigate to C:\Program Files\Microsoft SQL Server\90\SDK\Assemblies,
and then double-click Microsoft.ReportingServices.Interfaces.dll.

10. In Solution Explorer, right-click the name of the project, click Add Reference, click
the Browse tab, navigate to C:\Program Files\Microsoft SQL Server\MSSQL.3
\Reporting Services\ReportServer\bin, and then double-click AdventureWorks
.VB.ReportingServices.XMLDataExtension.dll to add a reference to your custom data
processing extension.

11. Save the file.

Adding a Data Source Connection

A data source connection is required only if you want to query the data source to get a list of
fields to use while building your report. By getting a list of fields before the application gener-
ates the RDL, you can create a flexible report that adapts to the current data set. For example,
you could reuse the application code to generate a table with three columns in one case and
four columns in another case if the query changes between each execution of the application.
If your application will produce a report that has a fixed structure, you don’t need to imple-
ment a method to open the data source connection.

In this procedure, you’ll add the OpenConnection() method to the application.

6-2250-7.book Page 464 Tuesday, March 21, 2006 3:45 PM

Chapter 16: Report Authoring with Custom Development 465

Add a method to open an XML connection

1. Switch to the RDLGenerator.vb file, and then replace the code for the OpenConnection()
method in the project with the contents of the OpenConnectionVB.txt file in the
C:\Documents and Settings\<username>\My Documents\Microsoft Press\rs2005sbs
\chap16 folder:

Public Sub OpenConnection()

 ' Create a connection object

 m_connection = New XMLConnection

 ' Create the connection string

 m_connectString = "data source=C:\Documents and Settings\<username>\My

Documents\Microsoft Press\rs2005sbs\chap16\Purchase Order Details.xml"

 m_connection.ConnectionString = m_connectString

 ' Open the connection

 m_connection.Open()

End Sub 'OpenConnection

Note In this example, the connection string is hard-coded into the method. (In order
to complete this procedure, the XML data provider extension described earlier in this
chapter must be deployed.) Of course, you can create a method that accepts a connec-
tion string as an argument. You can also omit this method if you don’t need to query the
data source to create a list of fields.

2. Save the file.

Generating a Fields List

As described in the previous section, you can create a fields list to use for generating the report
definition. You can use a loop in your RDL generator to iterate through the list of fields when
you want to assign the same elements and attributes to the report items associated with each
field. If you hard-code elements and attributes by field, you can skip the implementation of a
method to create a list of fields.

In this procedure, you’ll add the GenerateFieldsList() method to the application.

Add a method to generate a list of fields

1. Replace the code for the GenerateFieldsList() method in the project with the contents of
the GenerateFieldsListVB.txt file in the C:\Documents and Settings\<username>\My
Documents\Microsoft Press\rs2005sbs\chap16 folder:

6-2250-7.book Page 465 Tuesday, March 21, 2006 3:45 PM

466 Part V: Programming Reporting Services

Public Sub GenerateFieldsList()

 Dim command As XMLCommand

 Dim reader As XMLDataReader

 ' Executing a query to retrieve a fields list for the report

 command = m_connection.CreateCommand()

 m_commandText = "/PurchaseOrders/PurchaseOrder/items/item;" & _

 "description,qty,price," & _

 "../../@PO_id,../../@PO_date," & _

 "/PurchaseOrders/Customers/Customer"

 command.CommandText = m_commandText

 ' Execute and create a reader for the current command

 reader = command.ExecuteReader()

 ' For each field in the result set, add the name to an array list

 m_fields = New ArrayList

 Dim i As Integer

 For i = 0 To reader.FieldCount - 1

 m_fields.Add(reader.GetName(i))

 Next i

End Sub 'GenerateFieldsList

Note Here, the command text (which is dependent on the installation of the XML
data provider extension) is hard-coded into the method. Another way you might create
this method is using an argument to accept command text as input. The m_fields array is
used to store the list of field names. You can iterate through this list in another method
to embed field names into the report definition at run time rather than hard-code field
names. The method shown here is for illustrative purposes only—to show how to use the
custom data processing extension in a custom application and to show how to get a list
of fields from the data source. The GenerateRDL() method that you review in the next
procedure does not use the resulting list of fields.

2. Save the file.

Generating the RDL

The easiest way to generate the RDL is to use the XmlTextWriter class included in the
Microsoft .NET Framework. This class lets you write a forward-only stream of text without the
overhead of the XML Document Object Model (DOM), which helps the code runs faster. After
opening a file stream and instantiating an XmlTextWriter object, you create sets of elements
and attributes using the WriteStartElement, WriteElementString, WriteAttributeString, and Write-
EndElement methods. RDL is a declarative model (as explained in Chapter 4, “Developing
Basic Reports”), so the sequence of root elements is not important, nor is the sequence of sub-
elements. However, the relationship between an element and its descendant elements (which
can be nested to a considerable number of levels) is important because it controls the layout

6-2250-7.book Page 466 Tuesday, March 21, 2006 3:45 PM

Chapter 16: Report Authoring with Custom Development 467

of report items and their relative positions. For this reason, you need to ensure that the output
of your RDL generator conforms to the RDL specification published by Microsoft.

Note You can download the most current version of this specification at http://www
.microsoft.com/sql/technologies/reporting/rdlspec.mspx.

In this procedure, you’ll add the GenerateRDL() method to the application.

Add a method to generate RDL

1. Replace the code for the GenerateRDL() method in the project with the contents of the
GenerateRDLVB.txt file (or the GenerateRDLCS.txt file) in the C:\Documents and
Settings\<username>\My Documents\Microsoft Press\rs2005sbs\chap16 folder.

2. Review the code in this method, and then save the file.

You can see that this code is fairly extensive to produce a simple report. The resulting
report definition contains several required elements that appear at the start of the
method: <Report>, <DataSource>, <DataSet>, <Query>, <Fields>, and <Body>. The end tag
of the <Report> element is the very last string written to the output file in this method.
Consequently, the subsequent elements are subelements of the <Report> element. The
<DataSource> and <Query> elements contain the connection string and command text
used when Reporting Services executes the report. The <Body> element contains a
<ReportItems> subelement in which various data regions and independent report items
are placed. In this report, there is a free-standing textbox to hold the report title and a
table that contains not only a table header and footer, but also a group header and
footer. In addition, dynamic visibility has been used to hide selected elements, such as
textboxes in the group header or the detail rows when a report item is toggled.

Tip You can do many things to make this code more flexible. For example, you can
create a method to apply the same properties to all cells in a row. When building the ele-
ments for the row, you can use a FOR loop to iterate through the list of fields obtained
from the data source and then, within the loop, call a method to write out the set of
properties for the current field.

In this procedure, you’ll run the RDL application and test the results by uploading the report
definition to the Report Server.

Run the AdventureWorksRDLGenerator

1. If you are working on a Visual Basic project, click AdventureWorksRDLGenerator Prop-
erties on the Project menu, click AdventureWorksRDLGenerator.RDLGenerator in the
Startup Object list, and then save the file.

2. On the Debug menu, click Start Without Debugging.

6-2250-7.book Page 467 Tuesday, March 21, 2006 3:45 PM

468 Part V: Programming Reporting Services

Tip Use Start Without Debugging when you want to view the contents of the console
window while the application executes.

A console window opens and displays a message after the generation of the RDL is
attempted. If the application completed without throwing exceptions, the message dis-
played is “RDL file generated successfully.” You can, of course, modify this message by
changing the line Console.WriteLine("RDL file generated successfully.") to write
a different string of text.

3. Open the Report Manager, and then click Upload File on the Report Manager toolbar.

4. Click Browse to navigate to C:\Documents and Settings\<username>\My Documents
\Microsoft Press\rs2005sbs\Workspace\AdventureWorksRDLGenerator
\4AdventureWorksRDLGenerator\Debug folder, select the Purchase Order
Details.rdl file, click Open, and then click OK.

5. Click the new Purchase Order Details link in Report Manager.

Your screen looks like this:

6. Expand the order to view the hidden rows.

7. Click Properties, and then click the Data Sources link.

6-2250-7.book Page 468 Tuesday, March 21, 2006 3:45 PM

Chapter 16: Report Authoring with Custom Development 469

Your screen looks like this:

Notice that the custom data processing extension appears as an available connection
type for data sources. If you want to use a different XML file for this report, you can
change the file name in the connection string. As long as the new file conforms to the
same structure as the original file, the data can be read by Reporting Services and dis-
played in this report.

Chapter 16 Quick Reference

To Do this

Add embedded custom code
to a report

In Business Intelligence Development Studio, click Report Properties on the
Report menu, click the Code tab, and then enter a Visual Basic .NET code
block in the Custom Code box. Call the function in an expression using the
following syntax: Code.method(arguments). For example: =Code
.Divide(ReportItems!Margin.Value,ReportItems!SalesAmount.Value)

Use a custom assembly in a
report

Create a class library using a .NET language. In the Properties window for Re-
port, click the ellipsis button for the References property, click Browse in the
Add Reference dialog box, and select the .dll file for the assembly. Call a func-
tion from the custom assembly using the following syntax:
Namespace.Class.Method(arguments). For example: =AdventureWorks.
VB.Extensions.CommonFunctions.GetConditionColor(Me.Value,Pa-

rameters!CautionValue.Value,Parameters!AlertValue.Value)

6-2250-7.book Page 469 Tuesday, March 21, 2006 3:45 PM

470 Part V: Programming Reporting Services

Create a custom data
processing extension

Build a class library to create six required data processing objects that inherit
the Microsoft.ReportingServices.DataProcessing namespace. Each object is
associated with a specific interface and must implement all members of that
interface as follows:

Connection object: IExtension, IDbConnection, or IDbConnectionExtension.
The connection object must also include the Microsoft.ReportingServices.
Interfaces namespace.

Command object: IDbCommand.

Data reader object: IDataReader.

Parameter object: IDataParameter.

Parameter collection object: IDataParameterCollection.

Transaction object: IDbTransaction.

Deploy a custom data
processing extension

Place the assembly in the C:\Program Files\Microsoft SQL Server \MSSQL.3
\ReportingServices\ReportServer\bin folder and Program Files\Microsoft
Visual Studio 8\Common7\IDE\PrivateAssemblies folder. Then, after backing
up the configuration files, add a child element to the <Data> element in
both the RSReportServer.config file and the RSReportDesigner.config file.
Add a child element to the <Designer> element in the RSReportDesigner
.config file. Add a code group to the Rssrvpolicy.config file and the Rspre-
viewpolicy.config file to grant FullTrust permission.

Create RDL programmatically Create an application that includes methods to connect to and read a data
source and generate XML tags that conform to the RDL schema. The easiest
way to generate RDL is to use the XmlTextWriter class.

To Do this

6-2250-7.book Page 470 Tuesday, March 21, 2006 3:45 PM

471

Chapter 17

Programming Report Server
Management

After completing this chapter, you will be able to:

■ Use the rs utility (Rs.exe) to manage Report Server contents.

■ Create a Microsoft Windows application to search and update Report Server Contents.

■ Use Windows Management Instrumentation (WMI) classes to review and update
configuration settings.

As you learned in Chapter 16, “Report Authoring with Custom Development,” the Reporting
Services application programming interface (API) allows you to customize all stages of the
reporting life cycle. In this chapter, you’ll learn how to build a few alternatives to Report
Manager for managing Report Server. In fact, anything you can do with Report Manager can
be done programmatically by taking advantage of any of the more than 100 functions in the
Reporting Services Web Service Library. In this chapter, you’ll learn how to use this library to
build a Microsoft Visual Basic .NET script and a custom application, which will help you
understand the different ways that you can manage the contents of Report Server. Whether
you simply want to review the existing contents of Report Server or change its contents by
adding or deleting items such as folders or reports, you can build a tool to provide just the
range of functionality that you require.

Understanding Web Services
The Reporting Services Web Service is the programmatic interface that all client components
use to interact with Report Server. Unlike traditional server applications that run as a service
on a Windows server, a Web service doesn’t run at all. It simply exists to expose classes and
methods when it is called by a client. These classes and methods are encapsulated in a file
with an .asmx file extension. The code can also be compiled in a separate assembly file that is
placed in the same directory as the .asmx file. If you create a separate assembly, the declara-
tion of the Web Service in the .asmx file includes a reference to that assembly. A client appli-
cation can access a Web service in several different ways, but as implemented in Reporting
Services, the client finds the Web service via a URL that locates the .asmx file. Associated with
the .asmx file is an XML-based document known as a Web Services Description Language
(WSDL) document that describes all the public members of the Web service available to the

6-2250-7.book Page 471 Tuesday, March 21, 2006 3:45 PM

472 Part V: Programming Reporting Services

client. That is, WSDL is the metadata for the Web Service that exposes its methods, the argu-
ments required by those methods, and their return values.

Once you know how to locate a Web service, all you have to do is code the application to use
the Web service’s class library. Because the Microsoft .NET Framework includes support for
Web services, you’re insulated from the details behind how the client application actually com-
municates with the Web service. You need to understand, however, that the client application
and the Web service rely on a Web server to handle the transport of information between the
two locations by using HTTP. The structure of the information is packaged as SOAP messages,
which are formatted as XML documents. By using open standards such as HTTP, SOAP, and
XML, neither the client application nor the Web service is tied to a single platform or language.
Each is capable of receiving, translating, and sending SOAP messages that integrate applica-
tions and share data.

Typically, you use the components included with Reporting Services, such as Report Designer
and Report Manager, to avoid developing and maintaining additional code to perform man-
agement tasks. These components communicate with Report Server exclusively through a
Web service, which provides the complete range of management functionality required to
publish reports and other resources, set item properties, define security roles and assign-
ments, create schedules or subscriptions, and configure server properties. Using the .NET
Framework, you have several options for accessing the Reporting Services Web Service. To
handle specific functional needs, such as tasks that are frequently repeated, consider devel-
oping .NET scripts. You can also add Reporting Services management functionality to a con-
sole application or, when a graphical user interface (GUI) is preferred, to a Windows form
or a Web application. In all cases, you use a proxy class in your code to gain access to the
Web service library.

Using the rs Utility
If you need to perform only a simple management task, you don’t have to undertake the devel-
opment of a full-blown application. Instead, you can create a script file that you can execute
using the rs (Rs.exe) utility. The rs utility is the simplest way to use the Reporting Services
Web Service, because this utility creates a proxy class for you and automatically connects to
the Web service.

You first learned how to use the rs utility to publish in Chapter 9, “Managing Content,” but
this utility can be used to do much more. Because it has full access to the Reporting Services
Web Service Library, you can write a script using the rs utility to do anything that you can do
with Report Manager. Further, when you need to perform several tasks in series, you can cre-
ate multiple script files and then execute them as a batch process using command-line argu-
ments. (You executed scripts as a batch if you used PublishChap10.cmd or PublishChap
12.cmd when preparing for the procedures in these chapters.)

6-2250-7.book Page 472 Tuesday, March 21, 2006 3:45 PM

Chapter 17: Programming Report Server Management 473

Anything that you have to do multiple times is a task you should consider automating by
using scripts. For example, you might want to script the following repetitive tasks:

■ Deploying a set of reports to each Report Server in a Web farm.

■ Assigning the same server settings to multiple servers to maintain consistency across
environments.

■ Applying the same security or subscription settings to multiple reports.

The rs utility uses the following syntax:

rs –i input_file –s ReportServerURL –i input_file –s ReportServerURL –u username –p password

–l timeout –b –v variable_key=variable_value –t

The input_file is the name of the script file, which must be fully qualified when it isn’t in the
same directory as the rs utility. The ReportServerURL identifies the virtual directory for Report
Server on either a local or a remote server. Both of these arguments are required.

The following arguments are optional:

■ –u username and –p password Use this pair of arguments when you need to override
your current Windows logon credentials when connecting to Report Server. The creden-
tials that you use must have local administrator rights on the server that you are target-
ing with the script.

■ –l timeout Specify the maximum number of seconds to elapse before ending the
attempt to connect to Report Server. The default time-out value is 8 seconds. If you spec-
ify 0 seconds, the connection attempt will continue indefinitely.

■ –b To run the script commands as a batch, use the –b argument. If any single command
fails that is not handled as an exception in the script, the entire transaction is rolled
back. On the other hand, if the exception-handling in your script results in a normal
return from the Main method, the transaction is committed.

■ –v variable_key=variable_value Pass a value to a global variable in your script using
this argument. No spaces are allowed between the equal operator and the operands
variable_key and variable_value. If you have multiple variables, precede each key/value
pair with the –v flag. Even though you use the global variable in expressions in your
script, the global variable is not declared in the script.

■ –t Enable tracing for the execution of the script to update the trace logs should any
error messages result. This optional argument is useful when you are running unat-
tended scripts.

When you execute the rs utility, the utility automatically locates the WSDL document for the
Reporting Services Web Service on the specified server and creates a proxy class called rs.
This proxy class serves as the interface that you use in your script to access Web service
methods and properties. The rs utility also gives you access to four namespaces in the .NET

6-2250-7.book Page 473 Tuesday, March 21, 2006 3:45 PM

474 Part V: Programming Reporting Services

Framework—System, Sytem.IO, System.Xml, and System.Web.Services—that are not declared in
the script.

Querying Report Server

The rs utility is particularly useful when you need to iterate through a collection of items to
perform a particular task, such as to compile a list of items in a particular folder. Two methods
are available to retrieve information about Report Server contents—ListChildren() and Find-
Children(). This section shows you how to use ListChildren(). You use FindChildren() in the
next section.

A script requires a Main procedure, but you can also create your own subprocedures to mod-
ularize functionality within the script. When using ListChildren()—or any other Reporting
Services Web Service method—in a script, you must use the rs reference variable for the Web
service proxy class.

Note The Reporting Services Web Service library is documented in SQL Server Books
Online. In many cases, the documentation includes code samples to illustrate the usage of
Reporting Services methods and properties.

Use the following syntax with ListChildren(): rs.ListChildren(Item, Recursive). The Item
argument is the full path of the parent folder whose contents you want to list. For example,
use “/” to list the contents of the root folder (known as the Home folder in Report Manager)
or, for nested folders, use a string like “/Example Reports/Execution Log Reports.” The
Recursive argument is a Boolean expression used to specify how much content is retrieved by
the method. If True, all items in the specified folder and its nested folders are returned. If
False, only the items in the specified folder are returned.

The ListChildren() method returns an empty CatalogItem object if the specified folder is
empty, but returns an array of CatalogItem objects if items exist there. You can then use a
FOR loop to iterate through the CatalogItem objects and read the properties for each object.
Because security settings for items as defined in Reporting Services are enforced even when
accessing contents programmatically, the array of CatalogItem objects might not contain all
items that exist in the specified folder. The credentials that you use to run the script are
compared with role definitions and assignments to determine what items you can access
with Web service methods.

In this procedure, you’ll run a script that uses the ListChildren() method to display a list of
items and selected properties in the command window.

List items in a specified folder

1. Using Microsoft Notepad, open the Contents.rss file in the C:\Documents and
Settings\<username>\My Documents\Microsoft Press\rs2005sbs\chap17 folder.

6-2250-7.book Page 474 Tuesday, March 21, 2006 3:45 PM

Chapter 17: Programming Report Server Management 475

The script looks like this:

'The folder for which contents will be listed is passed as an argument in the

'command-line

Dim parentPath As String = "/" + parentFolder

Public Sub Main()

 Dim myCatalogItems() as CatalogItem = Nothing

 'Only the items visible to the current user will display

 rs.Credentials = System.Net.CredentialCache.DefaultCredentials

 Try

 'List only children in current folder - ignore descendants in nested folders

 myCatalogItems = rs.ListChildren(parentPath, False)

 Catch e As Exception

 Console.WriteLine(e.Message)

 End Try

 Dim item As CatalogItem

 Try

 Console.WriteLine("Name".PadRight(40) +

 "Type".PadRight(10) + "Modified Date")

 For each item in myCatalogItems

 Console.WriteLine(Microsoft.VisualBasic.Left(item.Name,39)

 .PadRight(40) + item.Type.ToString().PadRight(10) +

 item.ModifiedDate.ToString())

 Next item

 Console.WriteLine()

 Console.WriteLine(myCatalogItems.Length.ToString() + "

 total item(s)")

 Catch e As Exception

 Console.WriteLine(e.Message)

 End Try

End Sub

Notice the reference to the Microsoft.VisualBasic namespace in this code. Because the rs
utility does not provide access to this namespace automatically, you must include this
prefix in your Visual Basic .NET script when you need to manipulate a string value. In
this case, the Left function is used to truncate Item.Name so it will fit within a fixed col-
umn width structure.

Note You can use any text editor or scripting tool to create the script file, including
the Microsoft Visual Studio environment. However, even though the script must be writ-
ten in Visual Basic .NET, the resulting .rss file will not compile in Visual Studio.

6-2250-7.book Page 475 Tuesday, March 21, 2006 3:45 PM

476 Part V: Programming Reporting Services

2. Open a command window, navigate to the C:\Documents and Settings\<username>
\My Documents\Microsoft Press\rs2005sbs\chap17 folder, and then type the following:

rs -i contents.rss -s http://localhost/ReportServer -v parentFolder="My Adventure Works"

When passing a variable as an argument using the –v flag, you must be careful to type
the variable name and its value on each side of the equal sign (=) with no spaces. Other-
wise, an error message will be displayed when you try to run the utility.

Important This procedure assumes that you have completed previous chapters sat-
isfactorily. If you do not have the My Adventure Works folder on your Report Server, sub-
stitute a valid folder name to complete this procedure.

3. Press Enter.

Your screen looks like this:

Notice that some of the report names are truncated to fit the fixed column width
defined by the script. You can adjust the script to accommodate longer report names if
you prefer.

Even though the rs utility is a handy tool, typing a full set of arguments each time that
you want to use the utility can rapidly become tedious. You can use a batch file to sim-
plify running the utility.

4. Create a new file using Notepad and add the following text:

rs -i ..\chap17\contents.rss -s http://localhost/ReportServer -v parentFolder=%1

5. Save the file to C:\Documents and Settings\<username>\My Documents\Microsoft
Press\rs2005sbs\Workspace as listfolder.cmd.

6. In the command window, change to the C:\Documents and Settings\<username>\My
Documents\Microsoft Press\rs2005sbs\Workspace directory, type listfolder ''My
Adventure Works'', and then press Enter.

6-2250-7.book Page 476 Tuesday, March 21, 2006 3:45 PM

Chapter 17: Programming Report Server Management 477

Your screen looks like this:

Use the rs utility in a batch file for tasks that you repeat often. Adding a batch file argu-
ment to pass in a value for a script variable gives you greater flexibility for repeating sim-
ilar tasks with the same batch command file.

Tip Of course, you can create a batch command to perform many tasks as a single
series. Take a look at PublishChap10.cmd in the C:\Documents and Settings\<username>
\My Documents\Microsoft Press\rs2005sbs\chap10 folder for an example of how to run
scripts to publish data sources, reports, and a linked report by using a batch command.
The rs utility is also useful not only for querying Report Server, but also for iterative tasks
that include publishing reports and other resources, setting properties, establishing a
data source for reports, or assigning users to a role definition.

Using a Custom Application to Manage Reporting
Services

Even though you can use any method or property included in the Reporting Services Web Ser-
vice in a script by using the rs utility, the utility does not provide for user interaction while it
executes. If you require user interaction, you can develop a .NET application to provide a user
interface for management tasks. You can either build an application that exclusively performs
Reporting Services management tasks, or you can incorporate this management functionality
into existing applications. In either case, you need to add code to your application to create a
proxy class as an interface to the Reporting Services Web Service.

For each application that you create, you are required to perform specific tasks. You must first
create a proxy class for the Reporting Services Web Service. One way to do so is to use Visual
Studio to add a Web reference that specifies the location of the WSDL document describing
the available methods and properties of the Web service. The location for the WDSL docu-
ment is specified as a URL, http://<servername>/reportserver/reportservice2005.asmx?wsdl. In
addition to creating the proxy class, you need to create a reference variable for a Reporting-
Services object, which will be used as the mechanism for connecting to the Web service and

6-2250-7.book Page 477 Tuesday, March 21, 2006 3:45 PM

478 Part V: Programming Reporting Services

for accessing items on the server. In your application, you must also assign credentials from
the local .NET Credentials Cache so that Reporting Services can determine who is trying to
access the Web service and enforce the appropriate security role definition.

You can use the Reporting Services Web Service Library in a custom application to review
information about Report Server contents or settings. If you’re using a Windows form in your
application, for example, you can display this information using a ComboBox, ListView, or Tree-
View control. You can add buttons and other controls that enable the user to perform opera-
tions on the server, such as filter a list of items based on specified search criteria. You can also
use commands or controls to add or remove content on the server, to change item properties,
or to perform other management tasks.

Querying Report Server

You can build a custom browser application or custom management tool to look up informa-
tion about Report Server items that isn’t readily available using Report Manager. For example,
you can build a custom application to do any of the following:

■ Find reports available to a particular user.

■ Find out whether those reports require parameters.

■ Find out other pertinent information about those reports, such as subscriptions and
security settings.

■ Review properties for a set of items before updating those properties.

As you learned earlier in this chapter, one way to retrieve information from Report Server is to
use the ListChildren() method to navigate through the hierarchy of folders. Another way to get
information from Report Server is to use the FindItems() method to filter all or part of the
folder hierarchy based on search conditions. To use FindItems(), use the following syntax:
FindItems(folder, operator, conditions). The folder argument indicates the highest level
folder in a hierarchy to search. The conditions argument is an array that stores a minimum of
one property name/value pair that is used to search items that have a matching value for the
specified property. When you have only one name/value search condition, set the operator
argument to Nothing. When you have multiple search conditions in the array, set the operator
argument to AND or OR to indicate how the search conditions are evaluated in combination.

Like the ListChildren() method, the FindItems() method returns an empty CatalogItem object
or an array of CatalogItem objects matching the specified search criteria, but it returns only
those items that can be viewed based on the authenticated user’s permissions. Your search
can be based on any of the following CatalogItem properties: Name, Description, CreatedBy, Cre-
ationDate, ModifiedBy, or ModifiedDate.

6-2250-7.book Page 478 Tuesday, March 21, 2006 3:45 PM

Chapter 17: Programming Report Server Management 479

Note In this chapter, steps and illustrations are provided for creating applications using
Visual Basic .NET. Corresponding C# .NET code samples are available in the C:\Documents and
Settings\<username>\My Documents\Microsoft Press\rs2005sbs\chap17 folder, and com-
pleted C# .NET projects are in the C:\Documents and Settings\<username>\My Documents
\Microsoft Press\rs2005sbs\Answers\chap17 folder. To use these alternate code samples when
following the procedures in this chapter, replace VB with CS wherever you need to type a name
or open a file.

In this procedure, you’ll add code to a Windows form that uses the FindItems() method to dis-
play items and selected properties in a ListView control.

Search for items by name

1. Start Visual Studio, and then open the myRSManagerVB solution in the C:\Documents
and Settings\<username>\My Documents\Microsoft Press\rs2005sbs\chap17
\myRSManagerVB folder.

2. In Solution Explorer, right-click the Project folder, and then click Add Web Reference.

3. In the URL textbox, type http://localhost/ReportServer/ReportService2005.asmx?wsdl,
and then click Go.

One Web service—ReportService—is found at this URL.

4. In the Web Reference Name text box, replace the default value with ReportService.

The Add Web Reference dialog box looks like this:

Though it isn’t required, replacing the default Web Reference Name with the Web ser-
vice name to make it more easily identifiable in the Solution Explorer is a good idea.

5. Click Add Reference.

6-2250-7.book Page 479 Tuesday, March 21, 2006 3:45 PM

480 Part V: Programming Reporting Services

The Web reference is now added to the solution.

6. Double-click the myRSManager.vb file in Solution Explorer.

Your screen looks like this:

The myRSManager form currently contains a ListView control that will be populated
with a list of catalog items based on a search condition specified by the user. You need
to add a TextBox control for the search condition and a Button control to execute the
search and load the ListView control.

7. In the Toolbox window, double-click TextBox, and then double-click Button to add these
controls to the form.

8. Position the Button1 control to the right of the TextBox1 control.

9. Select the Button1 control, replace the Text property value with Find Items by Name
in the Properties window, and then widen the control so that the button’s full text is
displayed.

6-2250-7.book Page 480 Tuesday, March 21, 2006 3:45 PM

Chapter 17: Programming Report Server Management 481

Your screen looks like this:

10. Double-click Find Items By Name to open the Visual Basic page for the current form to
which a new subroutine, Button1Click, is added.

11. Add the following code after the Inherits statement at the top of the page:

Dim myReportService As New ReportService.ReportingService2005

Dim myCatalogItems As ReportService.CatalogItem()

The variable myReportService opens the connection to the Web service and is used to
pass information to Report Server, such as the user’s credentials. The variable myCatalog-
Items is an array of CatalogItem objects that will be used to store the results returned by
the FindChildren() method.

12. Expand Windows Form Designer Generated Code.

13. Type the following code after the InitializeComponent() statement:

myReportService.Credentials = System.Net.CredentialCache.DefaultCredentials

6-2250-7.book Page 481 Tuesday, March 21, 2006 3:45 PM

482 Part V: Programming Reporting Services

Your screen looks like this:

14. Collapse the #Region <;$QD> Windows Form Designer Generated Code <;$QS> sec-
tion of the page.

15. Copy the contents of the FindItemsButtonVB.txt file in the C:\Documents and
Settings\<username>\My Documents\Microsoft Press\rs2005sbs\chap17 folder
and paste into the code page within the Button1Click subroutine.

The code looks like this:

 'Initialize a SearchCondition object to search by item name

 'using the value obtained from TextBox1

 Dim mySearchConditions(0) As ReportService.SearchCondition

 mySearchConditions(0) = New ReportService.SearchCondition

 mySearchConditions(0).Name = "Name"

 mySearchConditions(0).Value = TextBox1.Text

 'Assign the SearchCondition object as an argument for the FindItems method

 'and begin the search at the root folder of Report Server to search all content

 'on the server. Store the results as an array of CatalogItem objects.

 myCatalogItems = myReportService.FindItems("/", Nothing, mySearchConditions)

 'Clear the ListView to prepare for loading with new values.

 ListView1.Items.Clear()

 Try

 If Not (myCatalogItems Is Nothing) Then

 Dim ci As ReportService.CatalogItem

 For Each ci In myCatalogItems

 'Instantiate each object in the array of CatalogItem objects

 'to assign item properties as details for the ListView control

6-2250-7.book Page 482 Tuesday, March 21, 2006 3:45 PM

Chapter 17: Programming Report Server Management 483

 Dim newItem As New CatalogListViewItem(ci)

 'Add the current catalog item to the ListView

 ListView1.Items.Add(newItem)

 Next ci

 End If

 'Display the complete list of catalog items

 ListView1.View = View.Details

 'Uncomment the lines below after adding the applicable button

 'Button2.Enabled = True

 'Button3.Enabled = True

 Catch ex As Exception

 'For a production environment, you should create

 'specific error-handling routines

 Throw New Exception("Unable to build tree view.")

 End Try

This code assumes that you want to search the entire contents of Report Server. You can
extend the code to allow run-time changes to the specified search folder.

Notice that each item in the ReportingService.CatalogItem class is instantiated as an object
of the CatalogListViewItem class. You will add this class later in this procedure.

16. Save the file.

17. In Solution Explorer, right-click the myRSManager project, point to Add, and then click
Add New Item.

18. Click Class, change its name to CatalogListViewItem.vb, and then click Add.

19. Copy the contents of the CatalogListViewVB.txt file in the C:\Documents and Settings
\<username>\My Documents\Microsoft Press\rs2005sbs\chap17 folder and paste
into the code page to replace the skeleton class definition.

The code looks like this:

Public Class CatalogListViewItem

 Inherits ListViewItem

 Private m_catalogItem As ReportService.CatalogItem

 Public Sub New(ByVal catalogItem As ReportService.CatalogItem)

 m_catalogItem = catalogItem

 'Retrieve the catalog item properties as subitems for the details

 'setting of the ListView control

 [Text] = m_catalogItem.Name

 Me.SubItems.Add(m_catalogItem.Description)

 Me.SubItems.Add(m_catalogItem.Type.ToString())

 Me.SubItems.Add(m_catalogItem.Path)

 Me.SubItems.Add(m_catalogItem.ModifiedDate.ToString())

 'You can additional properties here to include as details

6-2250-7.book Page 483 Tuesday, March 21, 2006 3:45 PM

484 Part V: Programming Reporting Services

 'but you will also need to adjust the Columns property for

 'the ListView control to define a name and column size for

 'the added properties

 End Sub 'New

End Class 'CatalogListViewItem

This file also includes code for the Item, Type, and Path properties for the CatalogListView-
Item class, which is not shown here.

20. Save the file.

21. Right-click the myRSManagerVB project in Solution Explorer, and then click Properties.

22. Click myRSManager in the Startup Object list box, and then save the project.

Because your Visual Basic application doesn’t include a Sub Main routine, you need to
specify the startup object so that the application will compile and execute.

23. On the Debug menu, click Start to run the form (or press F5).

24. In myRSManager, click Find Items By Name.

The myRSManager form looks like this:

The names of all items on the server—reports, linked reports, and data sources—appear.
You can see the item description, if one has been specified; the item type; the path to the
item from the root folder; and the modification date (which is equivalent to the creation
date when no subsequent modifications have been made to the item).

25. Type sales in the textbox, and then click Find Items By Name.

6-2250-7.book Page 484 Tuesday, March 21, 2006 3:45 PM

Chapter 17: Programming Report Server Management 485

The myRSManager form looks like this:

Any item on the server that includes the string “sales” in its name is displayed in the List-
View control. Notice that the search string is not case-sensitive.

Tip You can extend the code used in this procedure to sort the list by column or to
add search functionality for other catalog item properties, such as CreatedBy, Descrip-
tion, or ExecutionDate. You can find a complete list of properties in the topic, “Catalog-
Item Class,” in SQL Server Books Online.

26. Click Close to close the myRSManager window, but keep the project open.

Managing Reports

In addition to using a custom application to query a Report Server, you can use a custom
application to handle routine management tasks on the server. For example, your custom
application can include functionality to execute the following operations:

■ Add or delete reports, folders, data sources, or other resources.

■ Administer security settings.

■ Define schedules for report execution or subscriptions.

A complete review of all the possible functionality that you might consider for a custom
management tool is beyond the scope of this book. However, this introduction to using the
Reporting Services Web Library will give you enough information to understand how to use
the Reporting Services API in your own applications.

Perhaps the most common management task that you can include in a custom application is
uploading reports to Report Server. The easiest way to do so is to establish a common staging
area in which you place report definition files in preparation for upload. Then, you can iterate
through these files and use the CreateReport() method to add the report to a specified folder.
The CreateReport() method uses the following syntax:

CreateReport(report_name, parent_folder_path, overwrite_flag, report_definition,

report_properties)

6-2250-7.book Page 485 Tuesday, March 21, 2006 3:45 PM

486 Part V: Programming Reporting Services

These arguments have the following requirements:

■ report_name The report_name must be a string value. This value is associated with the
Name property of the resulting catalog item in the ReportServer database.

■ parent_folder_path The parent_folder_path is the full path name of the folder that will
contain the report. The path name must begin with the root folder, "/", and include all
folder names in the hierarchy to which the report will be added. For example, with a
path name like "/Example Reports/Execution Log Reports", the CreateReport() method
will add a report to the Execution Log Reports folder. If the folder name is invalid, the
method will fail.

Tip Your custom application can allow the user to select a target folder for the batch
of reports to be uploaded. You will see how to do this in the next procedure.

■ overwrite_flag This argument is a Boolean expression to indicate whether a report of
the same name in the same location should be overwritten.

■ report_definition The report_definition is a byte array that contains the contents of the
report definition file. You can load this byte array from a file using the FileStream class.

■ report_properties You can optionally supply an array that contains name and value
pairs for system-defined and user-defined properties of a report. If you don’t want to set
the report properties when you add the report, you need to use Nothing (or null when
coding with C# .NET) as a placeholder for this argument.

Another common management task is deleting content that is no longer needed. The
DeleteItem() method takes only one argument—the full path name of the item to be deleted.
The full path name includes the entire folder path from the root folder as well as the name of
the item. For example, to delete the Sales Summary report in the Adventure Works folder, you
use the following code: DeleteItem("/Adventure Works/Sales Summary"). When using the
DeleteItem() method, you’re not limited to reports. You can also delete folders and other
resources contained in folders, as well as subscriptions, schedules, or report snapshots. To use
this method, you must have delete permission for the item that you are attempting to delete.

In this procedure, you’ll add one button to a Windows form to add reports to a selected folder,
and another button to delete selected items.

Create buttons to add and remove content

1. In Visual Studio, switch to the design page of myRSManager to work with the Windows
form.

2. In the Toolbox window, double-click the Button control twice.

6-2250-7.book Page 486 Tuesday, March 21, 2006 3:45 PM

Chapter 17: Programming Report Server Management 487

3. Move the two buttons to the right of the Find Items By Name button so that your screen
looks like this:

4. Select the Button2 control, and then type Add Reports in the control’s Text property in
the Properties window.

5. Change the Enabled property for the Button2 control to False.

As you saw in the previous procedure, items do not display in the ListView control until
you use the Find Items By Name button. By disabling the Button2 control when the form
is first executed, you can require a user to retrieve items first, and then a folder can be
selected from the resulting list. You will change the code for the Find Items By Name
button (the Button1 control) to enable the Button2 control once a list has been created.

6. Select the Button3 control, and then type Delete Items in the control’s Text property in
the Properties window. Resize the button, if necessary, to view the entire text.

7. Change the Enabled property for the Button3 control to False.

This control works like the Button2 control and requires a user to select an item before
an operation can be performed. Consequently, you will enable this button only when
the user has requested a list by using the Find Items By Name button.

8. Switch to the code page (the myRSManager.vb form), and then remove the single quo-
tation mark from the Button1_Click subroutine to uncomment the lines
Button2.Enabled = True and Button3.Enabled = True.

9. Switch back to the design page, and then double-click Add Reports to view the code for
the Button2 control.

6-2250-7.book Page 487 Tuesday, March 21, 2006 3:45 PM

488 Part V: Programming Reporting Services

10. Copy the contents of the AddReportsButtonVB.txt file in the C:\Documents and
Settings\<username>\My Documents\Microsoft Press\rs2005sbs\chap17 folder
and paste into the code page within the Button2_Click subroutine.

The code looks like this:

 Dim parentfolder As System.IO.Directory

 'For a production environment, you should create a staging area

 'for reports ready for publishing, then change the folder path value below.

 Dim folderPath As String = "C:\Documents and Settings\<username>\My

Documents\Microsoft Press\rs2005sbs\chap17\"

 Dim parentPath As String

 If ListView1.SelectedItems.Count > 1 Then

 'For a production environment, you should create

 'specific error-handling routines

 Throw New Exception("Cannot select more than one parent folder")

 End If

 Dim selectedCatalogItems As ListView.SelectedListViewItemCollection =

Me.ListView1.SelectedItems

 If Not (selectedCatalogItems Is Nothing) Then

 Dim sci As CatalogListViewItem

 For Each sci In selectedCatalogItems

 If sci.Type = ReportService.ItemTypeEnum.Folder Then

 parentPath = GetFolderPath(sci.Path)

 Else

 'For a production environment, you should create

 'specific error-handling routines

 Throw New Exception("Select a folder")

 End If

 Next sci

 End If

 Dim reports As String() = parentfolder.GetFiles(folderPath, "*.rdl")

 Dim report As String

 'Each report in the array will be published to the same folder.

 For Each report In reports

 PublishReport(report, parentPath)

 Next

 'After all reports are published, Button1 (Find Items by Name) is activated.

 Button1_Click(Nothing, Nothing)

At this point, the GetFolderPath and PublishReports subroutines have not been declared.
You will add the code for these subroutines later in this procedure.

11. Copy the contents of the PublishReportVB.txt file in the C:\Documents and Settings
\<username>\My Documents\Microsoft Press\rs2005sbs\chap17 folder and paste

6-2250-7.book Page 488 Tuesday, March 21, 2006 3:45 PM

Chapter 17: Programming Report Server Management 489

into the code page below the Button2_Click subroutine to create the PublishReport and
GetFolderPath subroutines.

The code for these two subroutines looks like this:

Public Sub PublishReport(ByVal reportPath As String, ByVal parentPath As String)

 Dim definition As [Byte]() = Nothing

 Dim warnings As ReportService.Warning() = Nothing

 Dim warning As ReportService.Warning

 Try

 Dim stream As FileStream = File.OpenRead(parentPath + reportPath)

 definition = New [Byte](stream.Length) {}

 stream.Read(definition, 0, CInt(stream.Length))

 stream.Close()

 Catch e As Exception

 Throw New Exception(e.Message)

 End Try

 Try

 'Parse the report path to separate the report name from its folder path

 Dim reportPieces As String() = Split(reportPath, "\")

 Dim reportName As String = reportPieces.GetValue(reportPieces.Length - 1)

 reportName = reportName.Substring(0, reportName.Length - 4)

 'Publish the report to Report Server using the specified parentPath

 'but do not overwrite an existing report.

 'For production purposes, you need to test whether report exists first.

 warnings = myReportService.CreateReport(reportName, parentPath, False,

definition, Nothing)

 If Not (warnings Is Nothing) Then

 For Each warning In warnings

 Throw New Exception(warning.Message)

 Next warning

 Else

 'You should change this message and move to a new location

 'in the code if you publish a lot of reports using

 'this application.

 MessageBox.Show("Report "+reportName+" added.","Add

Report",MessageBoxButtons.OK)

 End If

 Catch e As Exception

 Throw New Exception(e.Message)

 End Try

 End Sub 'PublishReport

 Public Function GetFolderPath(ByVal currentPath As String) As String

 'Parse the item path to get the folder hierarchy

 Dim pathPieces As String() = Split(currentPath, "/")

 Dim parentLength As Integer = pathPieces.Length - 1

 Dim parentPath(parentLength) As String

6-2250-7.book Page 489 Tuesday, March 21, 2006 3:45 PM

490 Part V: Programming Reporting Services

 Dim i As Integer

 For i = 0 To parentLength

 parentPath(i) = pathPieces(i)

 Next i

 If parentPath.Length = 1 Then

 Return "/"

 Else

 Return String.Join("/", parentPath)

 End If

 End Function 'GetFolderPath

12. Above the class declaration at the very top of the page, add the following code:

Imports System.IO

The PublishReport subroutine that you added in the previous step uses the FileStream
class to read a report definition file from the file system. You need to add the System.IO
namespace to your application in order to use this class.

13. On the design page of myRSReportManager, double-click Delete Items, and then copy
the contents of the DeleteItemsButtonVB.txt file in the C:\Documents and Settings
\<username>\My Documents\Microsoft Press\rs2005sbs\chap17 folder and paste
into the code page within the Button3_Click subroutine.

The code looks like this:

Dim selectedCatalogItems As ListView.SelectedListViewItemCollection =

Me.ListView1.SelectedItems

If Not (selectedCatalogItems Is Nothing) Then

 Dim sci As CatalogListViewItem

 For Each sci In selectedCatalogItems

 Try

 myReportService.DeleteItem(sci.Path)

 Catch ex As Exception

 'For a production environment, you should create

 'specific error-handling routines

 Throw New Exception("Attempt to delete item failed.")

 End Try

 Next sci

End If

MessageBox.Show("Item(s) deleted.", "Delete Item", MessageBoxButtons.OK)

Button1_Click(Nothing, Nothing)

14. Save the file, and then press F5 to run the project and test the results.

15. In myRSManager, click Find Items By Name, scroll and select My Adventure Works.

6-2250-7.book Page 490 Tuesday, March 21, 2006 3:45 PM

Chapter 17: Programming Report Server Management 491

The myRSManager form looks similar to this:

Because you clicked the Find Items By Name button, the Add Reports and Delete
Reports buttons are now enabled.

Note The My Adventure Works folder is created as a result of completing the pro-
cedures in Chapter 9. If you skipped this chapter, you need to close the myRSManager
form. Open Report Manager and add a new folder to the Home page named My
Adventure Works. Then, run myRSManager and repeat this step to continue.

16. Click Add Reports.

This message box is displayed:

When this message is displayed, the report named Actual Vs Quota Chapter 17, which is
stored in the staging area C:\Documents and Settings\<username>\My Documents
\Microsoft Press\rs2005sbs\chap17, was successfully published to Report Server.

17. Click OK to close the message box.

18. In the textbox, type actual, and then click Find Items By Name. Drag the column han-
dles to make the Description column narrower and the Path column wider.

6-2250-7.book Page 491 Tuesday, March 21, 2006 3:45 PM

492 Part V: Programming Reporting Services

The myRSManager window looks like this:

Because the myRSManager is a simple application, it doesn’t sort the items in the List-
View. The easiest way to find the added report is to use the search feature.

19. Select the Actual Vs Quota Chapter 17 report that you just added to the My Adventure
Works folder, and then click Delete Item.

20. Click OK to close the message box.

The myRSManager window looks like this:

The Actual Vs Quota Chapter 17 report in the My Adventure Works folder was deleted.

21. Close the myRSManager window, and then close the myRSManager project in Visual
Studio.

Tip The myRSManager application is intended solely as a simple introduction to using
the Reporting Services Web Service Library. Consequently, it has limited functionality
and error-handling capabilities. For another approach to building a Windows application
to manage Report Server’s contents, take a look at the RSExplorer sample application.
You can find the files for RSExplorer in C:\Program Files\Microsoft SQL Server\90
\Samples\Reporting Services\Application Samples\RSExplorer Sample (if you install sam-
ples by running Microsoft SQL Server 2005 Samples from the Microsoft SQL Server 2005
/Documentation and Tutorials/Samples program group).

6-2250-7.book Page 492 Tuesday, March 21, 2006 3:45 PM

Chapter 17: Programming Report Server Management 493

Using the Reporting Services WMI Provider
In addition to the Web service interface that can be used in custom scripts and applications to
manage Report Server, Reporting Services includes WMI classes that allow you to programmati-
cally review and manage the configuration settings for Report Server and Report Manager. The
following two classes are defined in the namespace located at \root\Microsoft\SqlServer
\ReportServer\v9\Admin:

■ MSReportServer_ConfigurationSetting You can use this class to access some of the set-
tings defined at installation and the parameters defined in the RSReportServer.config
file. You can also use this class to read the value properties that correspond to settings in
the configuration file. Many of these properties are also write-enabled. This class also
includes a method to activate a Report Server instance. Not all configuration settings,
however, are accessible using this interface.

■ MSReportServerReportManager_ConfigurationSetting You can use this class to get some
of the installation settings and some of the parameters stored in the RSWebApplication
.config file. You can write to only one of these properties, URLToReportServer, which is
the URL used to access the virtual directory for Report Server. No methods are included
in this class.

Note The Reporting Services WMI classes are documented in SQL Server Books Online.

Querying a Report Server

To quickly check the current settings of a Report Server instance, you can incorporate the
Reporting Services WMI classes in a custom application. For example, you might create a
console application to iterate through a list of properties and then write a property name
and its value to the console window. You can also update some properties using a custom
application. Instead of opening the configuration file to change the value of a property, such
as DatabaseQueryTimeout—which puts a limit on the time that Report Server can attempt to
query the ReportServer database—you can programmatically update this value using a cus-
tom application.

A custom application to query Report Server settings provides you with a convenient tool to
look up the current values instead of opening configuration files individually. To access this
information, you must have system administrator privileges on the computer hosting Report
Server. If you need to change database-related information, such as database credentials for
the ReportServer database or change the name of that database, you must have database
administrator privileges. You can use a custom application to find out information in the fol-
lowing areas:

6-2250-7.book Page 493 Tuesday, March 21, 2006 3:45 PM

494 Part V: Programming Reporting Services

ReportServer database

■ Find out whether integrated security is in force and, if it is not, find out the user name
used to connect to the ReportServer database. The password is write-only and cannot be
accessed.

■ If integrated security is not in force, find out whether Report Server is configured to
impersonate a Windows user when connecting to the ReportServer database. When
impersonation is configured, you can get the impersonated user’s domain and user
name, but not the corresponding password, because it’s write-only.

■ View the connection and query time-out values imposed on Report Server when access-
ing the Report Server database.

■ Retrieve the name of the server on which the ReportServer database is installed as well
as the name of the SQL Server instance.

Report Server instance

■ Show the instance ID and the instance name for the Report Server instance.

■ Find the installation path for the Report Server instance.

■ Retrieve the virtual root for the Report Server instance.

Unattended execution

■ Find out the user’s domain and user name used when Report Server connects to a
remote server to run unattended reports. (Unattended execution is explained in Chap-
ter 11, “Managing Server Components.”) As with the other password properties in this
class, the corresponding password is write-only and isn’t accessible with this interface.

If you want to use the WMI classes in a custom application, you need to include the following
namespaces to the application: System, System.Management, and System.IO. Then, you need to
create a ManagementScope object to bring the Reporting Services WMI namespace of a speci-
fied server into scope. You also need to create a ManagementClass object to connect to the man-
agement object of a Report Server instance. This ManagementClass object is based on the
Report Server–specific WMI class definition at \root\Microsoft\SqlServer\ReportServer\v9
\admin:MSReportServer_ConfigurationSetting. Finally, you create a Report Server instance as
a ManagementObject object, which gives you access to a collection of PropertyData objects that
describe Report Server.

In this procedure, you’ll create a console application to display Report Server settings by using
WMI classes.

6-2250-7.book Page 494 Tuesday, March 21, 2006 3:45 PM

Chapter 17: Programming Report Server Management 495

List current Report Server settings

1. In Visual Studio, create a new project based on the console application template named
WMIQueryVB located in the C:\Documents and Settings\<username>\My Documents
\Microsoft Press\rs2005sbs\Workspace folder.

2. Add the following code to the top of the page above the Module statement:

Imports System

Imports System.Management

Imports System.IO

3. In Solution Explorer, right-click the WMIQuery project, and then select Add Reference.

4. Select System.Management in the list of components, click Select, and then click OK.

5. Copy the contents of the WMIQueryVB.txt file in the C:\Documents and Settings
\<username>\My Documents\Microsoft Press\rs2005sbs\chap17 folder and paste
into the code page within the Main subroutine.

The code looks like this:

Const WmiNamespace As String = _

"\\localhost\root\Microsoft\SqlServer\ReportServer\v9\Admin"

Const WmiRSClass As String = _

"\\localhost\root\Microsoft\SqlServer\ReportServer\v9\admin:MSReportServer_Config

urationSetting"

Dim serverClass As ManagementClass

Dim scope As ManagementScope

scope = New ManagementScope(WmiNamespace)

'Connect to the Reporting Services namespace.

scope.Connect()

'Create the server class.

serverClass = New ManagementClass(WmiRSClass)

'Connect to the management object.

serverClass.Get()

If serverClass Is Nothing Then Throw New Exception("No class found")

6-2250-7.book Page 495 Tuesday, March 21, 2006 3:45 PM

496 Part V: Programming Reporting Services

'Loop through the instances of the server class.

Dim instances As ManagementObjectCollection = _

serverClass.GetInstances()

Dim instance As ManagementObject

For Each instance In instances

 Console.Out.WriteLine("Instance Detected")

 Dim instProps As PropertyDataCollection = _

 instance.Properties

 Dim prop As PropertyData

Console.WriteLine("Property Name".PadRight(35) + "Value")

 For Each prop In instProps

 Dim name As String = prop.Name

 Dim val As Object = prop.Value

Console.Out.Write(prop.Name.PadRight(35))

 If val Is Nothing Then

 Console.Out.WriteLine("<null>")

Else

 Console.Out.WriteLine(val.ToString())

 End If

 Next

Next

Console.WriteLine("Press ENTER to continue")

Console.ReadLine()

6. Save the file.

7. On the Debug menu, click Start Without Debugging.

The console window looks like this:

Now, you have a quick way to check the settings of your Report Server without opening
the configuration file.

6-2250-7.book Page 496 Tuesday, March 21, 2006 3:45 PM

Chapter 17: Programming Report Server Management 497

Chapter 17 Quick Reference

To Do this

List items on Report
Server

Use the ListChildren() method. For example, to list all contents of Report Server:

rs.ListChildren("/", True)

To list only the contents of the specified folder:

rs.ListChildren("/", False)

Search items on Report
Server

Use the FindItems() method. For example, to search all folders on Report Server,
use:

FindItems("/", Nothing, myConditions)

where myConditions is an array containing a name/value pair like:

myConditions(0).Name = "Name"

and

myConditions(0).Value = "sales"

Add a Web reference to
the Reporting Services
Web Service

In Solution Explorer, right-click the References folder, and then click Add Web
Reference. Type: http://localhost/ReportServer/ReportService2005.asmx?wsdl
in the URL text box, and then click Go. Replace the default Web Reference Name,
if desired, and then click Add Reference.

Add a report to Report
Server

Use the CreateReport() method. For example:

CreateReport("Actual Vs Quota", "/Adventure Works",

False, report_definition,

Nothing)

where report_definition is a byte array created from reading in a report definition
file using the FileStream class.

Delete an item from
Report Server

Use the DeleteItem() method. For example:

DeleteItem("/Adventure Works/Sales Summary")

Review Report Server
and Report Manager
management properties

Include the following namespaces: System, System.Management, and System.IO.
Create a ManagementScope object using the WMI class definition at \root
\Microsoft\SqlServer\ReportServer\v9\Admin. Create a ManagementClass object
using the WMI class definition at \ root\Microsoft\SqlServer\ReportServer\v9
\admin:MSReportServer_ConfigurationSetting. Create a Report Server instance as
a ManagementObject object. Iterate through this object’s PropertyData collection.
For example:

For Each prop In instProps

Dim name As String = prop.Name

Dim val As Object = prop.Value Console.Out.WriteLine("Name:

"+prop.Name)

If val Is Nothing Then

 Console.Out.WriteLine("Value: <null>")

Else

 Console.Out.WriteLine("Value: "+val.ToString())

End If

Next

6-2250-7.book Page 497 Tuesday, March 21, 2006 3:45 PM

6-2250-7.book Page 498 Tuesday, March 21, 2006 3:45 PM

499

Chapter 18

Building Custom Reporting
Tools

After completing this chapter, you will be able to:

■ Use a URL to access reports and other items from Report Server.

■ Add parameters to a URL to control the appearance and behavior of reports.

■ Render reports programmatically in an application.

If you completed the previous two chapters, you have already learned a great deal about using
Reporting Services as a platform for developing applications that will author and manage
reports. Of course, because Reporting Services supports the full reporting life cycle, you can
also use it to customize the access and delivery of reports. From including links to current
reports in a Web page to creating a customized report viewer, you can choose from a wide
range of access and delivery options. You can implement these separately or in combination to
make reports available to the user community.

In this chapter, you’ll explore some alternatives for accessing reports independently of Report
Manager. These alternatives are not full-blown applications, but rather starting points that illus-
trate the key concepts you need to understand before undertaking development of your own
custom application. You’ll start with simple URL access and add parameters that allow you to
control how a report is accessed from Report Server. Then, you’ll learn different ways to render
a report in both a Microsoft Windows–based application and a Web application. Finally, you’ll
learn how to use the Reporting Services Web service to provide an interface for selecting param-
eter values that are used to render a report. After you complete this chapter, you’ll know how to
use Reporting Services as a foundation for building your own reporting tools.

Using URLs
Although Report Manager is a great application for accessing reports, some situations require
more direct access to reports. For example, you might want to add a link in a corporate portal
directly to specific reports and thus bypass Report Manager altogether. Similarly, you might
need to add a link to an executive dashboard that downloads a report to a specified format,
such as a Microsoft Excel file. Wherever you need to provide access to reports, you can easily
embed URLs to link to these reports. This method of accessing reports without Report Man-
ager allows you to keep the features of the HTML Viewer and also provides faster access to
reports than using the Web service.

6-2250-7.book Page 499 Tuesday, March 21, 2006 3:45 PM

500 Part V: Programming Reporting Services

Not only can you use URLs to access reports, but you can also use them to access other items
stored in Report Server and to perform several functions supported by Report Manager. You can
view the contents of folders, data sources, or resources uploaded to Report Server by using an
item’s URL. You can also add parameters to a URL to control behavior, such as setting the start-
ing page of a long report. Because parameters control how the report looks, you can specify a
rendering format for online viewing or download a file to another format such as Excel.

How to Use URLs to Access Reports

You can navigate Report Server’s virtual directory to find a report and to get its URL. You can
type this URL into your browser later to retrieve the report again, or you can use the URL as a
link by pasting it into an HTML page, Web application, or portal. In addition to using a URL
to access a specific report, you can include values in the URL for report parameters to override
the default values established by the report author or an administrator. For more control, you
can use special parameters known as URL access parameters to manage the HTML Viewer or to
give Report Server special instructions for handling the report request.

Viewing Reports

The easiest way to access a desired report by using URLs is to use your browser to navigate
from the virtual directory of Report Server, http://localhost/ReportServer, through the folder
hierarchy. When you use this approach, folders, data sources, reports, and resources are all
displayed in a list of links that is like a table of contents for the current folder. To the left of
each link is either an item identifier—such as <dir> for a folder or <ds> for a data source—or a
number that indicates the file size of the report or uploaded resource. You can use these links
to view the selected item or to view the list of contents for a nested folder.

Another way to access a report is to enter its URL directly into your browser or to use a link in
a Web page that includes the report’s URL. Either way, the URL syntax is http://servername
/ReportServer?/item_path. For servername, use localhost or the computer name of the server
hosting Report Server. Replace ReportServer with the virtual directory name for Report Server
only if you specified a different name when installing Reporting Services. Specify the final
component of the URL, item_path, using the full path of the item to access, which includes all
of the item’s parent folders and the item name itself. For example, to view the Product Profit-
ability report in the Custom Reporting folder on a local Report Server, use this URL: http:
//localhost/ReportServer?/Custom Reporting/Product Profitability.

Even though you are bypassing Report Manager by using URLs to access items on Report Server,
the security permissions still apply. You can open an item or view the contents of a folder only
when your role assignment has the correct permissions. If you plan to use the URL in a link that
you add to a Web page, make sure you have the correct role assignments defined for the item.

In this procedure, you’ll access reports by navigating Report Server’s virtual directory and by
entering a specific URL.

6-2250-7.book Page 500 Tuesday, March 21, 2006 3:45 PM

Chapter 18: Building Custom Reporting Tools 501

Display a report

1. Start Microsoft Visual Studio, and then open the Custom Reporting solution at C:
\Documents and Settings\<username>\My Documents\Microsoft Press\rs2005sbs
\chap18\Custom Reporting.

2. Right-click the solution name in Solution Explorer, and then click Deploy. Keep the
solution open in Visual Studio for a later procedure in this chapter.

3. Using Microsoft Internet Explorer, navigate to http://localhost/ReportServer to view the
contents of the virtual directory root, as shown here:

You can navigate through the folder hierarchy of Report Server directly without the
Report Manager interface. The content that you see is identical to the content viewable
through the Report Manager interface because the same security permissions apply.
Whether you use the Report Server virtual directory, the Report Manager interface, or a
custom interface (as you will later in this chapter), you always view the same content
because the same security infrastructure is always in force.

4. Click the Custom Reporting link, and then click the Product Catalog report.

6-2250-7.book Page 501 Tuesday, March 21, 2006 3:45 PM

502 Part V: Programming Reporting Services

Your screen looks like this:

Because the report is rendered as HTML, the browser includes the HTML Viewer tool-
bar with the report by default. Later in this chapter, you’ll learn how to override the
default behavior.

Notice the URL for this report in the Address box— http://localhost/ReportServer/Pages
/ReportViewer.aspx?%2fCustom+Reporting%2fProduct+Catalog&rs:Command=Render. You
can copy this URL and paste it into an HTML page or another application to create an
external link to this report. As another option, you can programmatically reproduce this
URL if you want to integrate reporting functionality into a custom application.

Your browser automatically encodes the URL by replacing each forward slash with %2f
and each space with + (plus sign). You are not required to create this fully encoded ver-
sion of the URL when using the URL in your browser or when placing it in a link. When
navigating Report Server, you’ll notice each link includes Pages/ReportViewer.aspx, which
is an ASP.NET page used to display reports in Web applications independently of Report
Manager. You can create a URL without explicitly including this page because the URL
will automatically update to include it. Each link also includes a URL access parameter,
such as rs:Command=Render, that instructs Report Server how to handle the request for
the item. Including this parameter in the URL that you use to access a report is not
required, although it is recommended. You’ll learn more about this and other URL
access parameters later in this chapter.

6-2250-7.book Page 502 Tuesday, March 21, 2006 3:45 PM

Chapter 18: Building Custom Reporting Tools 503

5. In the Address box of Internet Explorer, type http://localhost/ReportServer?
/Custom+Reporting/Product+Profitability to access the report shown here:

Instead of navigating the folder hierarchy of Report Server, you can go directly to a spe-
cific report when you know the URL.

Working with Report Parameters

When using URLs to access reports, you can decide how report parameters should be han-
dled. To override the default values established for the report, you can specify which values
should be set when the report is rendered by including a name/value pair for each parameter
that you want to change. To do this, add a string to the URL that uses the following syntax:
&rc:ParameterName=ParameterValue. All URLs are sent as plain text, so use Secure Sockets
Layer (SSL) when parameters include confidential data.

By default, the report is displayed in the browser window with the HTML Viewer toolbar,
which includes a Parameters area for selecting alternate values. The values that you specify in
the URL will be displayed in the Parameters area, but a user can also select new values. If
allowing changes to parameters is not required, you can hide the Parameters area by including
the following URL access parameter: &rc:Parameters=false. Hiding the Parameters area
makes more room available for viewing the report in the browser window; it isn’t intended as
a security feature when accessing reports using URLs. A user can still see the parameter values
in the URL string and even change the values by changing the URL string.

In this procedure, you’ll change the value of the Category report parameter to Bike, and then
you’ll hide the Parameters area of the HTML Viewer toolbar.

6-2250-7.book Page 503 Tuesday, March 21, 2006 3:45 PM

504 Part V: Programming Reporting Services

Control report parameters

1. In the Address box of Internet Explorer, type http://localhost/ReportServer?
/Custom+Reporting/Product+Profitability&Category=2.

Your screen looks like this:

The Category report parameter requires a value in the URL rather than the label that is
displayed in the corresponding list box in the report itself. You can still use the list box
to change the value for this or any other report parameter associated with this report.

Important When supplying parameter values in a URL, you need to know the valid
values. In this example, 2 is the value that the Bike label represents. If you try to use
&Category=Bike to set the report parameter value in this URL, an error will result.

2. Type the following URL in Internet Explorer: http://localhost/ReportServer?
/Custom+Reporting/Product+Profitability&Category=2&rc:Parameters=false.

6-2250-7.book Page 504 Tuesday, March 21, 2006 3:45 PM

Chapter 18: Building Custom Reporting Tools 505

Your screen looks like this:

By hiding the Parameters area of the HTML Viewer toolbar, you can see more of the
report in the browser window. The only way to change report parameter values now is to
change the URL.

Note When you use URL access parameters to access and display a report, the report
parameters and their values are visible in the browser. A user can change the URL by
replacing parameter values or by removing the parameters from the URL. The only way
to keep these details hidden from view is to programmatically render the report, which
you’ll learn how to do later in this chapter.

Using URL Access Parameters

URL access parameters provide you with additional options for controlling both what you see
and what you get. In the previous section, you learned how to hide the Parameters area of the
HTML Viewer toolbar. You can also control other features of this toolbar, and thereby affect
how the report is displayed, by including the corresponding URL access parameters in the
URL request. Some URL access parameters are specific to Report Server and give you control
over what is delivered in response to your request, such as a particular rendered format or a
report snapshot from a certain point in time. Finally, you can use a pair of URL access param-
eters to pass credentials to a data source.

6-2250-7.book Page 505 Tuesday, March 21, 2006 3:45 PM

506 Part V: Programming Reporting Services

All URL access parameters that affect the HTML Viewer use the following syntax: &rc:URL-
AccessParameterName=URLAccessParameterValue. The name/value pairs for this group of
URL access parameters are shown in the following table:

Note You can omit DocMap, Parameters, or Toolbar if you want to display these items. The
default value for these parameters is true, and you do not need to explicitly include them in the
URL request.

You can also include device-specific information in a URL access parameter using the &rc:
prefix. In this case, the name/value pair is the name of the device information settings element
and its corresponding value. For example, if you are rendering to a comma separated file
(CSV) format, you can replace the default file extension of .csv with another extension, such
as .txt. To do this, use this parameter: &rc:Extension=.TXT.

Note There are too many device information settings to be included in this book. However,
you can learn more about the settings available for each rendering extension by reviewing the
topic, “Reporting Services Device Information Settings,” in SQL Server Books Online.

The URL access parameters that control Report Server use the same syntax that you use for
parameters affecting the HTML Viewer, except that &rc: is replaced by &rs:. You can poten-
tially improve the performance of a request if you use the Command parameter. Because the
value that you supply for Command describes what you’re asking for, Report Server does not
have to look up the item type and determine the response. When you want to view a report,
use &rs:Command=Render. If you’re interested in seeing a list of items contained in a specified

Use To Like this

DocMap Hide a document map. &rc:DocMap=false

FallbackPage Display a specific page if a search fails. &rc:FallbackPage=1

FindString Locate a string in a report. Use with Start-
Find and EndFind to define the range of
pages to search.

&rc:FindString=hel-

met&rc:StartFind=1&rcEnd-

Find=5

Section Display the specified page. &rc:Section=10

Parameters Hide the parameters section of the HTML
Viewer toolbar.

&rc:Parameters=false

Toolbar Hide the HTML Viewer toolbar. &rc:Toolbar=false

Zoom Resize the report to the specified percent-
age (expressed as an integer) or to the fit
defined by Page Width or Whole Page.

&rc:Zoom=75

or

&rc:Zoom=Whole Page

6-2250-7.book Page 506 Tuesday, March 21, 2006 3:45 PM

Chapter 18: Building Custom Reporting Tools 507

folder, use &rs:Command=ListChildren. To view the XML representation of a data source, use
GetDataSourceContents. Report Server’s response to &rs:Command=GetResourceContents
depends on whether the item can be viewed in the browser and whether Report Server needs
to prompt you to open or save the file.

The complete set of URL access parameters that controls Report Server is shown in the follow-
ing table:

If the report uses a data source that prompts for credentials, you can pass those credentials as
URL access parameters. You pass credentials using the following syntax: &dsu:DataSource-
Name=username&dsp:DataSourceName=password. For example, if your data source is
SqlOrder01 and the ReportExecution user has read access to this data source, you can add
&dsu:SqlOrder01=ReportExecution&dsp:SqlOrder01=ReportExecution to the URL request for a
report.

Important Any parameters passed as part of the URL, including credentials, are sent as
clear text. Using SSL will encrypt the data during transfer. However, if you embedded a URL
that includes credentials in a Web page link, the user will see the unencrypted credentials in
the URL that is displayed in the browser.

In this procedure, you’ll use URL access parameters to hide the HTML Viewer toolbar as you
display a report, to render a report to a Portable Document Format (PDF) file, and to list the
contents of a folder.

Use To Like this

Command Identify the request to Report Server to im-
prove performance. Valid values: Render, List-
Children, GetDataSourceContents, and
GetResourceContents.

&rs:Command=ListChildren

Format Specify a rendering format. Valid values: XML,
NULL, CSV, IMAGE, PDF, RGDI, HTML4.0,
HTML3.2, MHTML, and EXCEL.

&rs:Format=EXCEL

Snapshot Render the snapshot created at the specified
date and time.

&rs:Snapshot=2004-06-

23T15:45:21

6-2250-7.book Page 507 Tuesday, March 21, 2006 3:45 PM

508 Part V: Programming Reporting Services

Add URL access parameters to a URL

1. In Internet Explorer, type the URL: http://localhost/ReportServer?/Custom+Reporting
/Product+Profitability&rc:Toolbar=false to view the report without the toolbar, as shown
here:

When you hide the toolbar using the Toolbar parameter, you also automatically hide the
Parameters area, so you can omit the Parameters parameter in the URL.

2. Export the report by typing the URL: http://localhost/ReportServer?
/Custom+Reporting/Product+Profitability&rs:Format=PDF.

6-2250-7.book Page 508 Tuesday, March 21, 2006 3:45 PM

Chapter 18: Building Custom Reporting Tools 509

3. Click Open to view the rendered report, which looks like this:

You can choose to render a report using a format other than HTML by specifying the
desired format in the URL. As long as you have a viewer application for the requested
format, such as Adobe Acrobat for the PDF format, you can open the requested report or
save the report to your computer.

4. Close the PDF file.

5. To list the contents of the Custom Reporting folder, type the following URL: http:
//localhost/ReportServer?/Custom+Reporting/&rs:Command=ListChildren.

6-2250-7.book Page 509 Tuesday, March 21, 2006 3:45 PM

510 Part V: Programming Reporting Services

Your screen looks like this:

You’re not limited to viewing reports when using URLs. You can also view resources or
data sources, as well as the contents of a specified folder, as shown in the previous illus-
tration. Alternatively, you could use http://localhost/ReportServer?/Custom+Reporting to
view the contents of this folder. However, the addition of the &rs:Command=ListChildren
parameter eliminates the need for Report Server to determine the type of item being
requested, thus speeding up the return of the requested information—in this case, the
list of items contained in the Custom Reporting folder.

Using the Web Service
When you need a higher degree of integration with existing applications or more control over
what users can see or do, you can create a custom reporting tool. If you built a custom man-
agement tool, for example, you might want to include the capability to preview a selected
report. Whether you need to provide a reporting tool to Windows users or to Web users, you
can easily develop an application that provides as little or as much functionality as require-
ments dictate. You can even build applications to use data from selected reports as a data
source for another application, such as an order entry system that can take your Reporting
Services purchase orders as input.

In Chapter 17, “Programming Report Server Management,” you learned how to use the
Reporting Services Web service to manage Report Server. Using the Web service to provide
access to reports in a custom application is very similar. For both types of tools, you create an
application that includes a Web reference to the Reporting Services Web service and you

6-2250-7.book Page 510 Tuesday, March 21, 2006 3:45 PM

Chapter 18: Building Custom Reporting Tools 511

authenticate the current user. In your reporting tool, you can use the Render() method to dis-
play a report, incorporate URL access into an application, or use the ReportViewer control.

You can build a reporting tool in so many ways that outlining all your possible approaches is
a daunting task. Because Reporting Services already provides a feature-rich reporting environ-
ment, you should need to develop a custom application to satisfy only specific requirements.
Taking a simple approach, you can build a reporting tool that allows the user to render a
report by double-clicking a report name that is displayed in a list. You can display the ren-
dered output in the application, display the results in a browser window opened by the appli-
cation, or write the output to a file in a specified location.

Another approach is to modify the functionality of a report. For example, you can incorporate
your own security measures rather than rely strictly on the Reporting Services security model.
Additionally, if you want greater control over how users can use parameters, you can wrap an
application around a report to provide your own interface for selecting parameter values. In
your custom application, you can use a ListBox control to allow the user to select multiple val-
ues, and then pass the selection to Report Server for rendering the report. With these exam-
ples in mind, you can begin to understand how you can leverage the Reporting Services
platform to augment the reporting capabilities that it provides.

Rendering a Report

To view a report, you need to send a request to Report Server to either render it or retrieve a
rendered report snapshot. The Reporting Services Report Execution Web Service includes the
Render() method as the interface for packaging this request. At a minimum, you use the Ren-
der() method to specify the full path to the report and the format to use for rendering. You can
also pass arguments to identify a snapshot, provide values for report parameters, specify
device-specific information required for rendering, or include credentials for a data source.

You aren’t required to display the report returned by the Render() method. The result is actu-
ally stored as a byte array that you can use any way that you like. For example, you can bind
the byte array to a control in a form, or you can generate the results as a file.

The Render() method uses the following syntax: Render(Format, DeviceInfo, Extension,
MimeType, Encoding, Warnings(), StreamIDs()). Only the Format argument is required.
The Format argument is the name of the rendering extension that is defined in the Report
Server configuration file. The available rendering extensions included with Reporting Services
(if you haven’t added extensions or removed any of the default rendering extensions) are
XML, NULL, CSV, IMAGE, PDF, HTML4.0, HTML3.2, MHTML, and EXCEL.

The remaining arguments are optional and are described in the following list. Many of them
perform functions that are similar to those of the URL access parameters described earlier in
this chapter. When using the Render() method, however, you still must include a value for
each argument by assigning the Microsoft Visual Basic .NET keyword Nothing (or null if you’re
using Microsoft Visual C# .NET).

6-2250-7.book Page 511 Tuesday, March 21, 2006 3:45 PM

512 Part V: Programming Reporting Services

■ DeviceInfo Build an XML string to pass the device information settings, which are spe-
cific to the selected rendering extension. For example, you might want to embed a
report in an existing HTML page rather than display it as a separate page. In this case,
use the string <DeviceInfo><HTMLFragment>True</HTMLFragment></DeviceInfo> as the
DeviceInfo argument.

■ Extension The Report Server returns the file extension that was used to produce the
output stream.

■ MimeType You can test the Multipurpose Internet Mail Extensions (MIME) type
returned by Report Server if you want to add code to make sure the browser can handle
the MIME type of the report format.

■ Encoding The Report Server also returns the encoding used to render the output.

■ Warnings() You should always test this array of Warning objects to uncover any prob-
lems encountered during report processing.

■ StreamIDs() You use the Stream IDs when using the RenderStream() method to get
external resources associated with the report, such as images.

In this procedure, you’ll add a control to a Windows application as a container for rendering
a report to a CSV format.

Render output to a RichTextBox

1. Copy the myRSManagerVB folder from the C:\Documents and Settings\<username>
\My Documents\Microsoft Press\rs2005sbs\chap17 folder to the C:\Documents and
Settings\<username>\My Documents\Microsoft Press\rs2005sbs\Workspace folder.

Note If you skipped Chapter 17, copy the myRSManagerVB folder from the C:
\Documents and Settings\<username>\My Documents\Microsoft Press\rs2005sbs
\Answers \chap17 folder to the Workspace folder. The steps in this procedure build on
the application completed in Chapter 17.

2. Start a new instance of Visual Studio and open the myRSManagerVB solution in the
myRSManagerVB folder.

3. In Solution Explorer, double-click myRSManager.vb to open the form.

4. In the Properties window, change the Height property of the form (in the Size category)
to 545.

5. In the Toolbox window, double-click RichTextBox to add the control to the form.

6-2250-7.book Page 512 Tuesday, March 21, 2006 3:45 PM

Chapter 18: Building Custom Reporting Tools 513

6. In the Properties window, change the following properties of RichTextBox1 to the values
indicated in this table:

Your screen looks similar to this:

7. Right-click the form, and then click View Code.

8. In the Class Name list at the top of the page, click ListView1.

9. In the Method Name list, click DoubleClick to add the method to the code page.

10. Copy the contents of C:\Documents and Settings\<username>\My Documents
\Microsoft Press\rs2005sbs\chap18\ListView_DoubleClickVB.txt into the
ListView1_DoubleClick method to add the following code:

'Create an instance of the proxy class for the execution service

Dim myReportExecutionService As New ReportExecutionService.ReportExecutionService()

myReportExecutionService.Url = "http://localhost/ReportServer/

ReportExecution2005.asmx?wsdl"

myReportExecutionService.Credentials =

System.Net.CredentialCache.DefaultCredentials

Property Value

Size: Width 728

Size: Height 250

Location: X 0

Location: Y 256

6-2250-7.book Page 513 Tuesday, March 21, 2006 3:45 PM

514 Part V: Programming Reporting Services

'Load the report in preparation for execution

Dim execInfo As New ReportExecutionService.ExecutionInfo

execInfo =

myReportExecutionService.LoadReport(myCatalogItems(ListView1.SelectedIndices.Item(

0)).Path, Nothing)

'Declare a byte array to store the results of the Render() method and

'a variable to specify Unicode encoding

Dim myDefinitionBytes As Byte()

Dim myEncoding As System.Text.Encoding = System.Text.Encoding.Unicode

Try

 'Pass the path of the selected item in the ListView to the Render() method

 'and render to a CSV format. Include the Nothing keyword as a placeholder

 'for the optional arguments. Store the results in a byte array.

 myDefinitionBytes = myReportExecutionService.Render("CSV", _

 Nothing, Nothing, Nothing, Nothing, Nothing, Nothing)

 'Place the contents of the byte array into the RichTextBox control

 'after translating the byte array into a Unicode string

 RichTextBox1.Text = myEncoding.GetString(myDefinitionBytes)

Catch ex As Exception

 'For a production environment, you should create

 'specific error-handling routines.

 Throw New Exception("Attempt to render failed.")

End Try

Note This example is just one way of handling the output of the Render() method.
Other options include writing the output to an HttpResponse object or to the file system.

11. In Solution Explorer, right-click the Project folder, and then click Add Web Reference.

12. In the URL text box, type http://localhost/ReportServer/ReportExecution2005
.asmx?wsdl, and then click Go.

13. In the Web Reference Name text box, replace the default value with
ReportExecutionService.

14. Click Add Reference.

15. Save the file, and then press F5 to run the application.

16. Type product profit in the textbox at the top of the form, and then click Find Items By
Name.

17. Double-click the Product Profitability report (with path /Custom Reporting/Product
Profitability) to view the report in the form, similar to this:

6-2250-7.book Page 514 Tuesday, March 21, 2006 3:45 PM

Chapter 18: Building Custom Reporting Tools 515

The CSV format of the report is displayed in the RichTextBox control. If you need to use
information from a report as source data for another application, you can use this form
to preview the contents of a report before saving the contents to a file. You can also
extend the functionality of this application by adding a button to save the render output
to a file or change the functionality of the double-click to open a browser window if you
want to view the report in HTML format. In fact, now that you know how to render a
report programmatically, there’s no limit to the possibilities for incorporating reporting
functionality into your own applications.

Tip The FindRenderSave sample application included with Reporting Services shows how
to save a rendered report to a file. You can find this application’s solution files in the C:
\Program Files\Microsoft SQL Server 2005 Samples\ReportingServices\Application Samples
\FindRenderSave Sample folder if you have installed the samples that ship with SQL Server
2005.

18. Close the myRSManager application.

Authenticating Users

When you build a custom application, you can integrate with an existing security infrastruc-
ture and then pass credentials that are recognized by Reporting Services. The procedures that
you have completed in this and the preceding two chapters pass the current user’s credentials
to Reporting Services. An ASP.NET application will run using its own account, but you can
either override this and impersonate the current user or integrate your own authentication
process. To impersonate the current user, add the following code to the Web.config file of
your application: <identity impersonate="true" />.

6-2250-7.book Page 515 Tuesday, March 21, 2006 3:45 PM

516 Part V: Programming Reporting Services

In this procedure, you’ll create a Web application that uses integrated Windows security and
impersonates the current user.

Add identity impersonation to a Web application

1. In Visual Studio, create a new website project by using the ASP.NET Web Site template in
the Visual Studio installed templates folder. In the Location box, type http://localhost
/myReportVB, and then click OK.

2. Open Internet Information Services (IIS) Manager, expand nodes to reach the Default
Web Site node, right-click the myReportVB virtual directory, and then click Properties.

3. Click the Directory Security tab of the myReportVB Properties dialog box, and then click
Edit for Authentication and Access Control.

4. Clear the Enable Anonymous Access check box, and then, if necessary, select the Inte-
grated Windows Authentication check box.

The Authentication Methods dialog box looks like this:

5. Click OK twice to close all dialog boxes, and then close Internet Information Services
Manager.

6. In Solution Explorer, double-click the Web.config file, and then add the following code
to the Authentication section of the file:

<identity impersonate="true" />

6-2250-7.book Page 516 Tuesday, March 21, 2006 3:45 PM

Chapter 18: Building Custom Reporting Tools 517

Your screen looks like this:

Now the application will authenticate using the current user’s credentials rather than
use the ASP.NET account.

Important Be sure to use “true” instead of “True” because this value is case-sensitive.
Otherwise, you’ll get an error when you try to run the application.

7. Save and then close the Web.config file.

Now you’re ready to add functionality to your Web application. In the next two sections,
you’ll learn how to retrieve report parameters for display in a Web Control and how to
render a report as part of a Web application.

Using Report Parameters in a Control

As you learned earlier in this chapter, using a URL to access a report and specify its parameter
values isn’t secure. A user can easily manipulate the URL to alter parameter values. If you want
to prevent a user from viewing or changing the parameter values that are passed to Report
Server, you can develop an application to display a report and manage the parameter interface.

As you learned in a previous section of this chapter, you can use the Render() method of the
report execution Web service to get output from the report server and display that output in a
form. Another way to display a report is to use the ReportViewer control, which is not a Reporting
Services control. It is instead distributed with Visual Studio 2005 because this control has many
uses beyond the scope of Reporting Services. In this chapter, you’ll learn only how to use the
ReportViewer control in “remote mode” to render a report stored on a Report Server.

6-2250-7.book Page 517 Tuesday, March 21, 2006 3:45 PM

518 Part V: Programming Reporting Services

The ReportViewer control includes the standard parameter interface, but you aren’t required to
use it if you prefer greater control. For example, you can filter the available parameter values
to display a subset of values, or you can set alternate default values. To create a parameter
interface, you first retrieve the parameters by using the GetParameters() method of the Server-
Report class, which is bound to the ReportViewer control. Then, you bind report parameters to
a control, such as a ListBox, DropDownList, or TextBox.

In this procedure, you’ll add an interface to the Web application that allows selection of report
parameter values before rendering a report.

Display available parameter values in a ListBox control

1. In Solution Explorer, double-click Default.aspx to open the Web page. Copy the
contents of the Table.txt file in the C:\Documents and Settings\<username>\My
Documents\Microsoft Press\rs2005sbs\chap18 folder and paste between the
<div></div> tags so that your screen looks like this:

This HTML code defines a table that contains list boxes to which you will bind parame-
ter values defined for the report.

2. Click the Design tab of the Default.aspx file, drag the ReportViewer control from the
Toolbox onto the page, right-click the ReportViewer control, click Style, click Position,
click Absolutely Position in the Position Mode list, and then set properties to values indi-
cated in the following table:

Property Value

Top 100 px

Left 8 px

6-2250-7.book Page 518 Tuesday, March 21, 2006 3:45 PM

Chapter 18: Building Custom Reporting Tools 519

The Style Builder dialog box looks like this:

3. Click OK.

Your screen looks like this:

Height 400 px

Width 800 px

Property Value

6-2250-7.book Page 519 Tuesday, March 21, 2006 3:45 PM

520 Part V: Programming Reporting Services

Notice the three list boxes that will contain the available values for the Year, Month, and
Category report parameters. List boxes are used in this procedure for simplicity as well as
to demonstrate the multiple selection of values later in this chapter. For your own appli-
cations, you can also use a drop-down list or a textbox to display parameter values.

4. In the ReportViewer Tasks dialog box, click <Server Report> in the Choose Report list,
type http://localhost/ReportServer in the Report Server Url box, and type /Custom
Reporting/Product Profitability in the Report Path box.

These property settings define “remote mode” processing for the Product Profitability
report, which will be retrieved from and processed on the specified report server. Using
“local mode,” you can process and render reports without using Reporting Services. For
more information, refer to Microsoft Visual Studio 2005 Documentation.

The report to render in this application is hard-coded as a property to keep things simple.
You learned in Chapter 17 how to retrieve a list of reports and find their paths. After com-
pleting this chapter, you could incorporate that logic if you want to practice your skills by
adding more flexibility to this application through the programmatic changes to the
ReportServerUrl and ReportPath properties of the report viewer’s ServerReport object.

5. In the Properties window, locate the ShowParameterPrompts property (in the Appearance
section) for ReportViewer1 and change its value to False.

6. Double-click the form background to open the code page.

7. At the top of the page, type the following statement to make the report viewer library
available to all members of the web form’s class:

Imports Microsoft.Reporting.WebForms

8. Paste the contents of the PageLoadVB.txt in the C:\Documents and Settings
\<username>\My Documents\Microsoft Press\rs2005sbs\chap18 folder into
the Page_Load() method to add the following code:

If Not IsPostBack Then

 'Use the GetParameters() method to retrieve the parameters

 'for the specified report.

 Dim parameters As ReportParameterInfoCollection =

 ReportViewer1.ServerReport.GetParameters()

 Dim i As Integer

 For i = 0 To parameters.Count - 1

 'Check each parameter to see if Available Values have been defined

 'Available Values are stored in the ValidValues property of the parameter

object

 If Not (parameters(i).ValidValues Is Nothing) Then

 'Assign the parameters to a ListBox control

 Select Case parameters(i).Name

 Case "Year"

 SetParameterValuesList(YearListBox, parameters(i))

6-2250-7.book Page 520 Tuesday, March 21, 2006 3:45 PM

Chapter 18: Building Custom Reporting Tools 521

Case "Month"

 SetParameterValuesList(MonthListBox, parameters(i))

 Case "Category"

 SetParameterValuesList(CategoryListBox, parameters(i))

 End Select

 End If

 Next

 End If

 'Process and render the report

 ReportViewer1.ServerReport.Refresh()

Again, to keep things simple, the assignment of parameters to ListBox controls is hard-
coded using the SetParameterValuesList method that you will add in the next step. You
can change this code to dynamically generate one control per parameter to make it more
flexible.

9. Copy the contents of the SetParameterValuesListVB.txt file in the C:\Documents and
Settings\<username>\My Documents\Microsoft Press\rs2005sbs\chap18 folder
below the Page_Load() method to add the following code:

Private Sub SetParameterValuesList(ByVal CurrentListBox As ListBox, ByVal

CurrentParameter As ReportParameterInfo)

 Dim i As Integer

 'Iterate through each available value and add its label and value as new

ListBox item

 For i = 0 To CurrentParameter.ValidValues.Count - 1

 CurrentListBox.Items.Add(New

ListItem(CurrentParameter.ValidValues(i).Label, _

 CurrentParameter.ValidValues(i).Value))

 Next

 'Set the default value as the selected value in the ListBox

 Dim DefaultValue As String

 Dim item As ListItem

 For Each DefaultValue In CurrentParameter.Values

 For Each item In CurrentListBox.Items

 If item.Value = DefaultValue Then

 item.Selected = True

 End If

 Next

 Next

 End Sub

If you want to limit the range of available values in the list, you can modify this code to
evaluate each Value against business rules before adding it to the list box. Similarly, you
can override the default values found in the Values collection of each parameter to set
the Selected property according to your application’s business rules.

6-2250-7.book Page 521 Tuesday, March 21, 2006 3:45 PM

522 Part V: Programming Reporting Services

10. Save the file, and then press F5 to test. Click OK to modify the Web.config file to enable
debugging if prompted.

Important Before deploying an application into production, you should update the
Web.config file to disable debugging.

Your screen looks like this:

The available values for each parameter are displayed in each ListBox control. The selected
value in each ListBox corresponds to the default value defined for the parameter. Now that
you have an interface for displaying parameter values, you need to add code to the View
Report button to change the parameters for the instantiated ServerReport object.

11. Close the browser window.

12. On the Default.aspx page, double-click View Report to automatically add a Click method
for this button, and then copy the following code from the Button1_ClickVB.txt in the
C:\Documents and Settings\<username>\My Documents\Microsoft Press\rs2005sbs
\chap18 folder into the Button1_Click method:

Try

 'Add the current selected value from each listbox to an array of parameter

objects

 Dim myParameters(2) As ReportParameter

 myParameters(0) = GetParameterSelectedValue(YearListBox, "Year")

 myParameters(1) = GetParameterSelectedValue(MonthListBox, "Month")

 myParameters(2) = GetParameterSelectedValue(CategoryListBox, "Category")

6-2250-7.book Page 522 Tuesday, March 21, 2006 3:45 PM

Chapter 18: Building Custom Reporting Tools 523

 'Update the ServerReport object with the selected parameters and refresh

 ReportViewer1.ServerReport.SetParameters(myParameters)

 ReportViewer1.ServerReport.Refresh()

Catch ex As Exception

 'Insert error-handling code here

End Try

13. Copy the contents of the GetParameterSelectedValueVB.txt in the C:\Documents and
Settings\<username>\My Documents\Microsoft Press\rs2005sbs\chap18 folder
below the Button1_Click() method to add the following code:

Private Function GetParameterSelectedValue(ByVal CurrentListBox As ListBox, ByVal

ParameterName As String) As ReportParameter

 Dim parameter As New ReportParameter(ParameterName, CurrentListBox.SelectedValue)

 Return parameter

End Function

14. Save the file, and then press F5 to test.

15. Select the parameter values as shown in the table below, and then click View Report.

Your screen looks like this:

Parameter Value

Year 2002

Month Feb

Category Bike

6-2250-7.book Page 523 Tuesday, March 21, 2006 3:45 PM

524 Part V: Programming Reporting Services

Tip You can use security creatively if you want to control access to reports within
Report Manager. You can block users from viewing the folder that contains the report in
your application so that users can neither see nor open that folder in Report Manager.
However, you can grant permission to the report within that folder so it can be accessed
directly by an application. (It can also be accessed directly by URL). This technique is use-
ful when you have reports that you display in a controlled interface, such as the param-
eter interface implemented here.

16. Close the browser window.

Enabling Multiselect for Parameters

If you want to use multiple values for a parameter, you can design a Web application that uses
the multiple selection mode of a ListBox control and then transform the selected values into a
string collection of report parameters that can be used with the IN operator in the dataset
query. This approach requires you to modify the report by adding a new parameter to contain
the values selected by the user and by altering the dataset query to use the new parameter.

In this procedure, you’ll modify both the report and the Web application to accept multiple
values for the Category parameter.

Pass multiple values for a parameter as a unit

1. Switch to the Custom Reporting solution, open the Product Profitability report, and
then click the Data tab.

2. On the Report menu, click Report Parameter, select Category in the Parameters list, and
then select the Multi-value check box.

The Report Parameters dialog box looks like this:

6-2250-7.book Page 524 Tuesday, March 21, 2006 3:45 PM

Chapter 18: Building Custom Reporting Tools 525

Previously, the Category parameter was configured to accept only one value. Now, you
have changed it to allow the user to select one or more values.

3. Click OK, and then replace (CategoryKey = @Category) with (CategoryKey IN
(@Category)).

4. Save the file, and then deploy the report.

5. In the myReportVB solution, open the Default.aspx page, click the CategoryListBox control
(which is third from the left), and then change its SelectionMode property to Multiple.

Your screen looks like this:

Now, you will need to modify the code that finds the selected value for this ListBox con-
trol so that you can combine the multiple values for a single report parameter.

6-2250-7.book Page 525 Tuesday, March 21, 2006 3:45 PM

526 Part V: Programming Reporting Services

6. Copy the contents of the GetParameterMultiSelectVB.txt in the C:\Documents and
Settings\<username>\My Documents\Microsoft Press\rs2005sbs\chap18 folder
below the GetParameterSelectedValue() method to add the following code:

Private Function GetParameterMultiSelect(ByVal CurrentListBox As ListBox, ByVal

ParameterName As String) As ReportParameter

 Dim parameter As New ReportParameter

 Dim item As ListItem

 parameter.Name = ParameterName

 For Each item In CurrentListBox.Items

 If item.Selected Then

 parameter.Values.Add(item.Value)

 End If

 Next

 Return parameter

 End Function

7. Change the assignment for myParameters(2) in the Button1_Click() method so that the
code looks like this:

myParameters(2) = GetParameterMultiSelect(CategoryListBox, "CategoryString")

8. Press F5 to start, select Accessory and Bike in the Category list (pressing the Ctrl key to
select multiple categories), then click View Report.

Your screen looks like this:

By clicking the Next Page button on the report viewer toolbar, you can verify that the
Bike category is also included in this report.

6-2250-7.book Page 526 Tuesday, March 21, 2006 3:45 PM

Chapter 18: Building Custom Reporting Tools 527

You have successfully created an application that uses the ReportViewer control with a
custom parameter interface to pass single or multiple values to a report parameter.

By completing the procedures outlined in this book, you have developed the skills you need
to successfully implement and manage Reporting Services. You can now understand how the
Reporting Services components work together to support the reporting life cycle as well as
how to develop custom applications to integrate this functionality into your environment.
With this foundation, you’re ready to put what you’ve learned into practice by developing,
deploying, and delivering your own reports!

Chapter 18 Quick Reference

To Do this

Display a report by using
URLs

Navigate the folder hierarchy starting from http://localhost/ReportServer to
locate the report.

or

Type the URL of the report in your browser. For example: http://localhost
/ReportServer?/Custom+Reporting/Product+Profitability.

Specify report parameter
values in a URL

Create a string using the following syntax &rc:ParameterName=Parameter-
Value and append the string to the URL. For example: http://localhost/Report-
Server?/Custom+Reporting/Product+Profitability&rc:Category=Bike.

Control the features of the
HTML Viewer

Create a string using the following syntax:

&rc:URLAccessParameterName=URLAccessParameterValue

and append the string to the URL. For example, to hide the HTML Viewer tool-
bar, use: http://localhost/ReportServer?/Custom+Reporting/Product+Profit-
ability&rc:Toolbar=false.

Control how Report Server
retrieves items

Create a string using the following syntax &rs:URLAccessParameter-
Name=URLParameterValue and append the string to the URL. For example:
http://localhost/ReportServer?/Custom+Reporting &rs:Format=PDF.

Programmatically render a
report

Use the Reporting Services Render() method or use the Visual Studio 2005
ReportViewer control.

Impersonate a user in an
ASP.NET application

Add <identity impersonate="true" /> to the Web.config file.

Create a parameter
interface

Bind the results of the ReportViewer1.ServerReport.GetParameters() method
to a ListBox, DropDownList, or TextBox control. Test each control for a selected
value and pass that value as a ReportParameter object using the report view-
er’s SetParameters() method.

Allow the selection of
multiple values for a single
parameter

Create one report parameter to store values used to display options to the
user and bind these values, using the GetParameters() method, to a ListBox
control with the SelectionMode property set to Multiple. After requesting a
new report (by pressing a button, for example), iterate through the items in
the list box, add the selected item values to a ReportParameter object, and
then refresh the report.

6-2250-7.book Page 527 Tuesday, March 21, 2006 3:45 PM

6-2250-7.book Page 528 Tuesday, March 21, 2006 3:45 PM

529

Glossary

action An interactive feature that is used to access
information located in another place, whether in a
separate section of the same report, in a completely
different report, or in a Web page on an intranet or
external Web site.

ad hoc reporting Reviewing, and possibly sharing,
limited information with limited formatting require-
ments on an as-needed basis.

cached instance A temporary version of a report
stored in the ReportServerTempDB to be used for
rendering in response to multiple requests.

calculated field An expression added to a dataset
that can be used in a data region as if it were part of
the original dataset.

conditional formatting A change to the appear-
ance of an item, such as a font size or background
color, based on the result of evaluating a Boolean
expression.

data region A report layout structure that contains
data, such as a table or matrix.

data source view (DSV) An XML file used to
describe the structures and relationships in a data
source and to define logical tables, columns, or rela-
tionships that do not exist in the data source. The
data source view is used as a source object for gener-
ating a report model.

data-driven subscription A subscription that uses
a database query to set delivery options.

dataset Information used to retrieve data for a report,
such as a query and a pointer to the data source, as
well as information used when the query executes,
such as a time-out value or a query parameter value.

declarative model A model that describes output
rather than the series of instructions required to pro-
duce the output.

deploy Publish a report to the report server.

dynamic visibility An interactive feature that
enables a user to click an item to toggle the state of an
item between hidden and visible.

enterprise reporting Sharing of information on a
regular basis across a wide audience.

enterprise reporting life cycle The process of
authoring, managing, and accessing reports.

extensions Subcomponents of Report Server used
to provide specific functionality, such as data pro-
cessing, rendering, report processing, authentication,
and delivery.

global variable A variable that is a member of the
Globals collection used to access information unique
to a report, such as the current page number or the
total number of pages in a report.

group A set of detail rows that are organized by a
common field.

intermediate format The result of merging data
from a query with layout information from a report
definition. The intermediate format is sent to a ren-
dering extension to produce the final output, such as
an HTML page or an Excel file.

item A report, image file, report model, folder, data
source, or other file uploaded to the report server.

item role assignment An association between a
security role and an item on the report server.

linked report A report that is based on a report defi-
nition and data source, but which has its own execu-
tion, parameter, subscription, and security
properties. A linked report is often used to customize
a single report for different users.

multidimensional expressions (MDX) An
expression language used with Analysis Services to
model database objects and to retrieve values from
an Analysis Services cube.

Named Calculation A logical column added to the
definition of a physical table, which is analogous to
a derived column in a view defined in a relational
database.

Named Query A logical table defined in a data
source view, which is analogous to a view in a rela-
tional database.

perspective A subset of entities, attributes, and roles
defined in a report model used to simplify the avail-
able ojects for building ad hoc reports.

rendering The process of converting a report defi-
nition and the report data into a specified output
format.

report Information that is structured and formatted
for print or online viewing.

6-2250-7.book Page 529 Tuesday, March 21, 2006 3:45 PM

530 Glossary

report consumer An application used to transform
a report definition and query results into a final
report.

report definition A description of a report’s data,
layout, and properties.

Report Definition Language (RDL) An open
XML schema used to create a report
definition.

report item An item used to display text or graphi-
cal elements in a report, such as a textbox, table,
chart, or image, to name a few.

report item expression An expression that per-
forms operations after processing is complete, which
makes it useful for situations in which a calculation
can be performed only after the dataset is aggregated
and the calculation cannot be derived directly from
the dataset.

report model A logical view of a relational database
used to build ad hoc reports. The report model
describes the database’s tables and columns as well
as the relationships between them.

report producer An application used to create a
report definition.

report snapshot A report that preserves a record of
data at a point in time. A report snapshot is stored in
the ReportServer database in its intermediate format
and rendered only when a user requests the report.

scope A set of rows, or grouping, used to cacluate an
aggregated value, or alternately, an entire data region
or dataset.

source field A reference to a column defined in a
data source view that is added to the report model
after the report model is generated.

stored credentials A combination of user name
and password that is encrypted and stored in the
ReportServer database to allow unattended execu-
tion of reports. Stored credentials are required for
snapshots and subscriptions.

subreport A report item used to display another
report inside the current report.

system role assignment An association between a
security role and a server-wide administrative task,
such as schedule management.

table A collection of cells organized into a fixed num-
ber of columns. A table can have either detail rows or
group rows, or both detail and group rows.

6-2250-7.book Page 530 Tuesday, March 21, 2006 3:45 PM

531

Index
Symbols
&rc prefix, URL access parameter, 506

A
access and delivery

overview of, 8
processor components, 13–14
programmatic interface for, 16
Report Manager, 13
Report Server databases, 16
server extensions, 14

access parameters, URLs, 505–510
accessing reports. See reports, accessing
accounts

adding service accounts, 22
built-in vs. domain user, 21
local system administrator’s group, 21

Action property, 179
actions

adding, 179
jumping to report with, 179–182
linking report items to related information, 178

ad hoc reports
creating with Report Builder, 405
defined, 3, 16
keys to success of, 428
overview of, 4
Report Builder for, 10
standardization of, 5

advanced reports, 161–198
hierarchical data. See hierarchical data
interactive features. See interactive features
quick reference, 198
report parameters. See report parameters
subreports. See subreports

aggregate functions, 125–131
adding first and last function to page footer, 131
adding Sum function to report body, 129–130
group subtotals, 92
list of, 126
in matrix data regions, 140
overview of, 125–127
in tables, 127–129
in textboxes, 129
Recursive keyword used with, 193
Scope argument in, 174
syntax of, 127

alignment, in report models, 214
Analysis Services, 194–197

as data source, 194
data set, 196

data used in tables, 197
overview of use in reports, 194

analysts, 6
AND/OR operators, 478
application layer, in Reporting Services architecture, 9
Application Servers, IIS, 19
architecture, Reporting Services, 8
arithmetic expressions, 222–223
ASP.NET, 19
assemblies

calling function from custom assembly, 441
creating .NET assembly and adding custom

functions, 438
custom, 441–445
location in Reporting Services, 441
namespace assignment, 447

attributes
adding to reports with Report Builder, 408
Alignment property, 214
deleting, 214
entities and, 200
Format property, 213
IdentifyingAttributes property, 218
perspectives and, 215
rearranging sequence of, 216
renaming, 212
in Report Builder’s Fields list, 407
SortDirection property, 214
sums, 222

authentication
adding identity impersonation, 515–517
extensions, 14

authoring
components, 9–11
overview of, 7

B
Back button, returning to previously opened reports or

folders, 336
back ups, symmetric key, 328
backgrounds/foregrounds, ad hoc report formats, 421
backup and restore strategy, 326–328
batch commands, 477
bookmark actions, 178
Boolean expressions, 132
browser application, for querying Report Server,

478–485
Browser role

adding to report models, 226–228
assigning, 273–276
managing subscriptions, 375
overview of, 272

built-in accounts, user credentials, 21
Button1_Click() method, 523

6-2250-7.book Page 531 Tuesday, March 21, 2006 3:45 PM

532

C
cache

defining report cache, 66
implementing cached instances of reports, 259–261

calculated fields
adding to datasets, 114
creating, 114

calculation, expressions for
adding to reports, 222
adding with Report Builder, 426
overview, 113–114

cascading, report parameters, 174
case-sensitivity, in field names, 116
cells

copying, 119
merging cells for centering table header, 128
table, 83

central storage, 5
chart legend, 152–154
Chart Option dialog box, 417
charts 148–155

adding to reports, 148–149
building with Report Builder, 417–420
chart legend, 152–154
compared with other data regions, 138
formatting, 419
nesting in a list, 158
overview, 148
properties, 154–155
series groups in, 150–152
types of, 148, 417
values and column groups added to, 149–150

ChunkData tables
checking size of, 325
ReportServer vs. ReportServerTempDB, 325

classes
creating custom class library, 438–441
required classes for data processing extensions, 454
WMI, 492

Clickthrough
overview of, 415
viewing details with, 416–417

Code global member, 436–438
accessing embedded code functions, 436–438

code, custom. See custom code
<CodeModules>, 441, 444
colors

Color property of report items, 132
formatting, 93

columns
changing names of column headers, 421
column groups added to charts, 149
column groups required in matrix reports, 413
column headers in Report Builder, 411
grouping in matrix data regions, 142–144

indenting, 97
interactive sorting, 86
static columns added to matrix data regions,

146–147
working with column groupings in reports, 412

ComboBox, 478
command line

installing Reporting Services from, 23
utilities, 12

command objects, for data processing extensions,
450–451

Command parameter, URL access, 506–507
comma separated values (CSV) file

exporting table as, 372–373
rendering report as, 371–372
sharing report data using, 355

components
access and delivery, 13–16
authoring, 9–11
configuring, 28
management stage, 11–13
Reporting Services, 8
selecting during installation of Reporting Services,

24–27
conditional formatting, 132–133
conditional logic, 433
configuration files, 299–304

associated with server components, 299
changing encrypted information in, 302–304
changing unencrypted information in, 301
editing ReportingServicesService.exe.config, 306
overview of, 299

Configuration Manager, 28
configuration prerequisites, installing Reporting

Services, 20
connection objects, for data processing extensions,

448–450
console application, creating, 462–464
content

moving report content, 244–246
organizing report content, 242–243

Content Manager role
assigning, 276–277
managing subscriptions, 375
overview of, 272

controls, report parameters used in, 517–524
copying cells and expressions, 119
Count function, 193
CreateReport() method, 485
credentials

configuring stored, 252
configuring user, 251
creating snapshot for report history, 347
creating standard e-mail subscription, 377
encrypting for unattended reports, 303

cache

6-2250-7.book Page 532 Tuesday, March 21, 2006 3:45 PM

533

executing on demand report, 257
file share delivery, 386
passing as URL access parameters, 507
secure, 65
storing with rsconfig utility, 303
troubleshooting subscriptions, 402
user account, 21–22

crosstab formats, in matrix reports, 412
cumulative values, in tables, 127
custom applications

browser application. See browser application, for
querying Report Server

functions of, 478
managing Reporting Services, 477–478
managing reports. See reports, custom applications

for managing
custom assemblies, 441–445
custom code, 433–445

accessing functions with Code global member,
436–438

adding to reports, 434
custom assembly functions, 441–445
custom class library, 438–441
embedding code in reports, 434
overview of, 433

custom reporting tools
authenticating users, 515–517
enabling multiselect for parameters, 524–527
overview of, 499
quick reference guide, 527
using report parameters in controls, 517–524
using URLs. See URLs
Web service. See Web service

D
data elements, in matrix reports, 413
data exchange

rendering as CSV File, 371–373
rendering as Excel file, 367–371
rendering as XML file, 373–374
rendering generally, 367

data layer, Reporting Services architecture, 9
data processing extensions, 446–462

command objects, 450–451
connection objects, 448–450
data reader objects, 451–453
deploying, 454–458
namespace assignments, 447–448
overview, 15, 446
required classes, 454
testing, 459–462

data reader objects, for data processing extensions,
451–453

data regions, 137–160
charts. See charts

lists. See lists
matrices. See matrix data regions
overview, 137
quick reference, 160
recursive hierarchy in, 189–194
structuring reports, 82
tables, 137–138
types of, 137–138
using, 138

data security, 285–295
filtering data by user, 293–295
overview, 285
query parameter for restricting data, 285–288
restricting source query by user, 288–289

data source view (DSV), 201–204
Data Source View Wizard, 201
data sources

Analysis Services as, 194
changing data source properties, 65
connecting to, 78
disabling shared, 321–324
generation and, 464–465
managing report, 250–251
moving shared, 244
query parameter support, 167
for report models, 200–201
selecting for new report, 40–43
shared, 78

database administration, 324–326
ChunkData table size, 325
monitoring storage consumption, 324

DatabaseQueryTimeout property, 493
databases

credentials for accessing, 21
default names, 18
initializing execution log database, 309–312
permissions for accessing, 21
Report Server, 31, 494
stored procedures for creating, 172

data-driven subscriptions
checking status of, 399
creating, 390–398
creating subscription delivery table, 389
editions supporting, 18
overview of, 389
troubleshooting, 402

datasets
adding calculated fields, 114
Analysis Services, 194, 196
filters, 175–176
for report parameter values, 173–174
reusing in other reports, 139
working with, 79–82

debugging, with trace logs, 305
declarative models, 75
default values, specifying/changing, 253–254

default values, specifying/changing

6-2250-7.book Page 533 Tuesday, March 21, 2006 3:45 PM

534

Default Web Site, for installation of Reporting
 Services, 20

DefaultTraceSwitch setting, trace logs, 305
definitions. See report definitions
DeleteItem() method, 486
deleting subscriptions, 403
delivery extensions

disabling subscriptions, 376
overview of, 15

delivery stage. See access and delivery
deploying

data processing extensions, 454–458
report model project, 224
reports, 236–238

deployment options, Reporting Services, 17
deployment properties, defining by project, 234–235
design

rendering report as PDF file and, 363
rendering report as TIFF file and, 358

detail rows
aggregation functions for, 127
hiding, 183
sorting, 134

Detail View, Report Model Designer, 207, 209
Developer Edition, 18
Device Info, 512
device information settings, URL access

parameters, 506
disabling subscriptions, 376
disk space requirements, 326
distribution. See access and delivery
division, errors caused by dividing by zero, 434
DocMap, URL access parameter syntax, 506
document management

rendering as PDF file, 362–366
rendering as TIFF file, 358–362

document map, PDF
adding groups to, 363–366
exporting report as PDF file, 366
overview of, 363

Document Object Model (DOM), 466
DOM (Document Object Model), 466
Domain User accounts

selecting service accounts, 27
user credentials, 21

domains, restricting report delivery and, 376
drilldown, 182
DSV (data source view), 201–204
dynamic reports, 346
dynamic visibility, in Reporting Services, 182

E
editing properties, Report formatting toolbar, 96
editions, Reporting Services, 17–18
e-mail

checking status of subscription, 399
creating data drive subscriptions for, 389
delivering standard subscription by, 376–383
report delivery configuration, 33

e-mail delivery extension, 15
e-mail notification, 15
embedded logos, 108
embedded reporting, 4
embedded code, 434
encoding, 512
encryption

backing up and restoring encryption keys, 327
changing encrypted information in configuration

files, 302–304
credentials for unattended reports, 303
passing parameter as part of URL using, 507

Enterprise Edition, 18
enterprise reporting

authoring, 7
defined, 3, 16
life cycle, 6, 16
standardization, 5

entities
attributes in Report Builder, 407
navigating via roles, 409
overview, 199
perspectives and, 215
renaming, 212

errors, dividing by zero, 434
Excel

exporting interactive table to, 368–371
rendering as, 367–368
sharing report data using, 355

exceptions, identifying, 132
Execute Package utility, 315
execution logs, 307–317

adding current data to, 315–317
initializing execution log database, 309–312
managing, 308
overview off, 308
report, 312–315
reviewing current settings, 308

execution properties
changing, 66–67
reviewing, 63–64

execution, of reports
applying time-outs to, 318–320
managing, 307

exporting
interactive tables to Excel, 368–371
reports, 69–71
reports as MHTML, 356–358
reports as TIFF files, 359–362

expressions, 113–136
added to reports, 426

Default Web Site, for installation of Reporting Services

6-2250-7.book Page 534 Tuesday, March 21, 2006 3:45 PM

535

added to tables, 84, 426–428
aggregate functions, 125–127
arithmetic expressions, 222–223
calculating margin, 114–119
calculating values with, 113–114
changing object behavior with, 132
conditional formatting, 132–133
copying, 119
creating calculated fields, 114
global variables in, 119–120
highlight expressions, 132
Level function in, 191
overview of, 113, 222
referring to embedded code in, 436
ReportItems collection, 122–125
sorting, 133–135

Extension, 512
extensions

data processing. See data processing extensions
defined, 16
rendering, 355
server, 14–15
types of, 446

external reporting, 4

F
FallbackPage, URL access parameter syntax, 506
fields

adding to charts, 150
adding to lists, 157
adding to tables, 83–86
calculating margin, 114–119
case sensitivity of field names, 116
compared with global variables, 120
expressions for calculating, 114
field names as group header, 91
lists of, 465–466

file share delivery
checking status of, 399
creating for reports, 383–389
extension, 15

files, moving report content, 244
filters

adding to dataset, 175–176
compared with query parameters, 167, 172
created from report parameters, 172–173
data security, 285
displaying in textboxes, 177
filtering reports data by user, 293–295
filtering reports with Report Builder, 423–426

FindItems(), 478–485
searching for items by name, 479–485
syntax, 478

FindRenderSave sample application, 515

FindString, URL access parameter syntax, 506
First aggregate function, 131
floating headers, 98–99
folders

applying item security to, 277
creating new, 243
listing items in specified folder, 474–477
managing report content, 242
moving report content and, 244
navigating folder hierarchy, 334–335
for report model objects, 216
searching with FindItems(), 478–485

fonts
formatting ad hoc reports, 421
properties, 95
styles, 93, 95

footers
adding First and Last aggregate function to page

 footer, 131
adding page footers, 105–106
adding Sum function to, 92
showing group footer totals in group header, 185

FOR loops, 433
Foreground Color, 95
Format argument, 511
Format dialog box, Report Builder, 421
Format function

in report parameters, 162
syntax of, 129

Format, URL access parameter, 507
formats, 93–94

adding URL access parameters to a URL, 509
chart legend, 152
charts, 154, 419
comparison of rendering, 355–356
conditional formatting, 132–133, 165–166
numeric values, 94, 213
rendering, 8
setting Format property, 93
table reports, 421–423

Formatting toolbar, in Report Builder, 420–421
formulas, table, 83
functions, calling from custom assembly, 441

G
Generic Query Designer, 81, 194
GetParameters() method, 518
global variables

adding to reports, 120–122
defined, 114
in expressions, 119–120
ReportName, 122

Globals collection, 119
graphical elements, 106–108

graphical elements

6-2250-7.book Page 535 Tuesday, March 21, 2006 3:45 PM

536

group headers, 91–92
Grouping And Sorting Properties dialog box, 89
groups

adding Sum function to footers, 92
adding to document map, 363–366
adding to tables, 88
column groups added to charts, 149
column groups added to matrix data regions,

142–144
defined, 88
list of, 157
nesting and, 158
role assignments, 272
row groups added to matrix data regions, 140–141
series groups added to charts, 150–152
subtotals by, 92–93, 144

H
headers

adding group headers, 91–92
adding page headers, 104
centering table header, 128
repeating table header, 103
showing group footer totals in group header, 185

help, in Report Builder, 408
Hidden property

hiding detail rows in tables, 183
overview of, 183
toggling hidden state of items, 184

hierarchical data, 188–197
overview, 188
recursive hierarchy in a data region, 189–194

high availability, multiple server configuration and, 19
highlight expressions, 132
HTML, 355–356
HTML Viewer

displaying reports, 502
hiding Parameters area of, 505
refreshing report with, 333
saving reports to local files, 349–351
URL access parameter syntax, 506
using, 339–342

HTTP, 472
hyperlinks, action, 178

I
IDataReader, 451
IDbConnection, 448
IdentifyingAttributes property, in report models, 218
identity impersonation, 515–517
IF...THEN statements, 433
IIF function, 132
IIS (Internet Information Services)

Application Server, 19

configuring for e-mail delivery, 377
Report Server using, 13

Image Wizard
adding embedded logo to report, 108
launching, 108

images
adding, 108–111
uploading to reports, 240

inactive subscriptions, deleting, 403
indentation, column, 97
information consumers, 5
information explorers, 6
installing Reporting Services, 17–36

choosing edition, 17–18
component selection, 24–27
Configuration Manager, 28
configuration prerequisites, 20
creating user account credentials, 21–22
deployment options, 17
installation options, 23
naming conventions, 19
operating system requirements, 19
preparing for, 19
Quick Reference, 35
report delivery options, 32
service account selection, 27–28
setup wizard, 23–24
site configuration, 18
software requirements, 20
specifying Report Server database, 31
verifying installation, 34
virtual directory configuration, 29

interactive features
actions. See actions
overview, 177
subreports. See subreports
visibility properties. See visibility

interactive sorts, 86
intermediate format

defined, 13, 16
scheduling reports using, 14

internal reporting, 4
Internet Explorer, 356
Internet Information Services. See IIS (Internet

Information Services)
item role assignment, 271
item security

applying, 277–280
editing, 277

IWAM_computername account, 20

J
Jobs, canceling report jobs, 320–321

group headers

6-2250-7.book Page 536 Tuesday, March 21, 2006 3:45 PM

537

L
Label property

displaying in a textbox, 177
Parameters collection, 164

Last aggregate function, 131
layout. See also formats

rendering reports as TIFF file, 359–362
report creation and, 55–57

legend, charts, 152–154
Level function, 191
libraries, class, 438–441
lines, adding graphics to reports, 106
linked reports

options for working with, 248
overview of, 246–247
query parameter for restricting data, 285–288

links
actions for linking report items to related

information, 178
navigation, 334–335

ListBox control, 518–524
ListChildren()

displaying list of items, 474–477
rs utility and, 474
syntax, 474

lists, 155–159
adding to reports, 156
compared with other data regions, 138
fields in, 157
generator looping through list of fields, 465–466
grouping and sorting, 157
method for generating list of fields, 465
nesting chart and matrix in, 158
nesting lists inside lists, 158

ListView, 478–479
local mode setting, 520
logos, adding to reports, 108
loops

custom functions taking advantage of, 433
generator for looping through lists of fields, 465

M
"Manage all subscriptions" assignment task, 375, 398
"Manage individual subscriptions" assignment task,

375–376, 398
management stage

components, 11–13
overview of, 7

margin
added to tables, 117
defined, 114
editing, 96
field for calculating, 114–119
properties, 358

mathematical operations, 222

matrix data regions, 138–140
adding, 139–140
compared with other data regions, 138
grouping columns, 142–144
nesting in a list, 158
overview, 138
row groups added to, 140–141
sorting rows, 141–142
static rows and columns in, 146–147
subtotals in, 144–146

matrix reports
building with Report Builder, 412–415
required components in, 413

MaxActiveReqForOneUser, 302
MDX (multidimensional expressions) queries

accessing OLAP data, 189
Analysis Services using, 194

MDX Query Builder, 194
merge cells, 128
metadata

in data sources, 201
Web Services, 472

MHTML (MIME Encapsulated Aggregate HTML),
356–358

Microsoft Application Center, 19
Microsoft SQL Server Management Studio, 12, 207
Microsoft Windows, installing Reporting

Services on, 19
MIME Encapsulated Aggregate HTML (MHTML),

356–358
MIME (Multipurpose Internet Mail Extensions), 109
MimeType argument, 512
Model Designer, Visual Studio

Detail View, 207, 209
modifying report models, 211–212
overview, 11, 200
Report Model Wizard in, 204
reviewing layout of, 208
Tree View, 207–208

Models, 4
months, sorting, 143
MSReportServer_ConfigurationSetting, 493
MSReportServerReportManager_ConfigurationSetting,

493
MSRS 2005 Web Service, performance counter, 307
MSRS 2005 Windows Service, performance counter, 307
multidimensional expressions (MDX) queries. See

MDX (multidimensional expressions queries)
Multipurpose Internet Mail Extensions (MIME), 109
My Reports

overview, 243
role, 272
using, 342–346

My Subscriptions page
deleting inactive reports using, 403
using, 399–401

My Subscriptions page

6-2250-7.book Page 537 Tuesday, March 21, 2006 3:45 PM

538

N
Named Calculation, 201
Named Query, 201
names, searching for reports by partial, 337–339
namespaces

data processing extensions, 447–448
rs utility, 473

naming conventions
installing Reporting Services and, 19
specifying file paths on remote computers, 385

navigation, of folder hierarchy, 334–335
nesting

lists, 158
subreports in tables, 187–188

.NET data providers, extending, 46

.NET Framework
custom assemblies and, 433
options for accessing Web services, 472
Report Server and Report Manager and, 20
reusing code and, 438
rs utility accessing namespaces of, 474
support for Web Services, 472

null delivery provider, 15
null values, in report parameters, 166
Nullable property, 223
numeric values

adding to headers or footers, 85
formats, 93–94, 213

O
objects

changing, 212
expressions for changing behavior of, 132
deleting, 215
organizing, 215
overview, 200
placing in folders, 216
rearranging, 216
renaming, 212

OLAP (online analytical processing)
hierarchical data in reports, 189
MDX queries and, 194
Reporting Services using, 7

OLE DB .NET data providers, 79
OLTP (online transaction processing), 7
On Demand, report execution, 256
online analytical processing. See OLAP (online

analytical processing)
online transaction processing (OLTP), 7
operating systems, requirements for installing

Reporting Services, 19
operators

arguments, 478

combining mathematical operators with
expressions, 113

ORDER BY clause, 133
overwrite option, file share delivery, 386–388
OverwriteDataSources property, 234, 246, 250

P
padding

adjusting in textbox, 96
function of, 155

page breaks, 100
page headers, 104
page size properties, 358
PageLoad() method, 520–521
parameters

adding query parameters to reports, 289–293
changing default values of, 254
disabling parameter prompt, 255
enabling multiselect for, 524–527
filtering data, 285
HTML Viewer, 339
query parameter for restricting data, 285–288
query parameters for restricting source queries by

user, 288–289
report. See report parameters
URL access, 505–510
using in controls, 517–524

Parameters collection, 164–165. See also report
parameters

Parameters, URL access parameter syntax, 506
parent-child dimension, 189
PDFs (Portable Document Format files)

adding groups to document map, 363–366
as rendering format, 355
exporting report as, 4, 366

performance counters, 307
permissions

database access, 21
file share delivery, 384
using URLs to access reports, 500

personal linked report, 342–346
perspective

changing in reports models, 217
of report models, 215

POP3 (Post Office Protocol v3) Server, 382
portable document files. See PDFs (Portable Document

Format files)
Post Office Protocol v3 (POP3) Server, 382
previewing reports, 51–54
printing reports, 351, 358–362
programmatic rendering, 372
programming Reporting Services

custom code. See custom code

Named Calculation

6-2250-7.book Page 538 Tuesday, March 21, 2006 3:45 PM

539

data processing extensions. See data processing
extensions, customizing

report definitions. See report definitions, customizing
properties

data source, 65
execution, 66–67
changing report properties, 62
chart, 154–155
color, 95
content management, 250
deployment properties by project, 234–235
editing, 96
font, 95
format, 93
rendering report as TIFF file, 358
reviewing report properties, 59–61
setting report and project properties, 49–51
table, 103
working with general properties of report, 248–249

proxy classes, Web Service, 474
Publisher role, 272
publishing reports

management stage beginning at, 7
report creation and, 57–58
Report Designer and, 342
report models and, 224
Report Server and, 233–234, 408
republishing, 238

push and pull distribution methods, 8
push paradigm, subscriptions and, 375

Q
queries

available report parameter values, 174–175
browser application for querying Report Server. See

browser application, querying Report Server
creating, 82
designing, 43–44
Generic Query Designer, 81
ORDER BY clause, 133
Report Server, 493–494
rs utility for, 474
SQL compared with MDX, 194

Query Builder, 82
query parameters, 167–172

adding to database, 167–169
adding to reports, 289–293
compared with filters, 172
defined, 161
filtering data with, 285
improving report performance with, 172
restricting access to data, 285–288
restricting source queries by user, 288–289
values for, 169–172

R
RDL (Report Definition Language)

defined, 10
method for generating, 467
overview of, 75
programming report definitions. See report

definitions, customizing
RDLGenerator class, 462–464, 467
recursive hierarchy, 189–194

defining parent group for, 189
Level function, 191

Recursive keyword
overview, 192
using with aggregate functions, 193

References property, 441
Refresh button

defined, 334
replacing session cache with, 336–337

remote mode setting, 520
Render() method, 511
rendering reports

defined, 355
extensions, 15
formats, 8, 355–356
for online viewing, 356–358
overview of, 355, 511–515

rendering reports, for data exchange
as CSV file, 371–373
as Excel file, 367–371
as XML file, 373–374

rendering reports, for document management
as PDF file, 362–366
as TIFF file, 358–362
overview of, 367

Reply to email address, 379
Report Builder, 405–429

applications, 10
building chart reports, 417–420
building matrix reports, 412–415
building reports with, 408
building table reports, 408–412
Clickthrough feature, 415–417
column headers, 411
enhancing reports, 420
expressions added to reports, 426
expressions added to table reports, 426–428
filtering reports, 423–426
formatting options, 421
formatting table reports, 421–423
help, 408
launching, 406–408
overview, 10, 405
Quick Reference, 429
role, 272
subtotals, 410

Report Builder

6-2250-7.book Page 539 Tuesday, March 21, 2006 3:45 PM

540

window, 407
report consumers, 76
Report Definition Language. See RDL (Report

Definition Language)
report definitions

overview of, 75
saving, 411
updating, 238

report definitions, customizing, 462–469
automating creation of files, 462
creating console application, 462–464
data source connection, 464–465
generating, 466–467
generating files, 469
generator looping through fields lists, 465–466
running generator, 467

Report Designer, 76–112
adding fields to tables, 83–86
adding graphical elements, 106–108
adding group headers, 91–92
adding images, 108–111
adding page footers, 105–106
adding page headers, 104
adding report items, 82
adding tables, 82
choosing components to install, 24
computing group subtotals, 92–93
correcting layout issues, 55–57
creating new project, 76
creating new report, 77
data source connection, 78
floating headers, 99
formatting reports, 93–94
grouping table data, 88–91
overview of, 9–10, 76
page breaks, 100
publishing reports from, 342
Quick Reference, 112
sorting table rows, 86
structuring reports with, 82
styles, 94–96
table properties, 103
textboxes, 100–102
Visual Basic.NET formatting strings and, 94
working with datasets, 79–82

Report Formatting toolbar
editing properties, 96
setting color and font style properties, 95
using, 95

report items
adding, 77
adding from toolbox, 82
adding to tables, 123–125
Color property, 132

report items expressions

adding to tables, 123–125
defined, 114
using, 122–123

Report Manager
adding system roles, 281
building report models, 207
canceling report jobs, 320
changing default values of parameters, 254
choosing components to install, 24
comparing execution performance, 315
compared with Web Services libraries, 471
configuring cached instances, 259
configuring stored credentials, 252
configuring user credentials, 251
creating new folder, 243
creating shared schedules, 262
default values and, 253–254
defined, 9, 13
deploying reports, 236–238
disabling shared data sources, 322
executing on demand report, 257
execution properties, 63–64
finding and viewing reports, 333–334
installing on Web server, 20
linking reports, 247
managing folders, 242
managing report content, 250
managing reports, 59–67
moving shared data sources, 244
moving virtual directories, 20
My Reports feature of, 243
.NET Framework and, 20
organizing report content, 242
overview of, 12
publishing reports, 233
query parameter for restricting data, 285
report execution time-outs, 318
republishing with redeployment updates, 238
reviewing report properties, 59–63
rs scripts and, 472
single server deployment and, 18
Upload File feature, 239–240
uploading resources, 240
verifying installation of, 34
Web.config files, 300

Report Model Wizard
attributes created by, 407
creating report models, 200, 205–207
in Model Designer, 204

report models, 199–230
adding, 204
alignment, 214
arithmetic expressions in, 222–223
as basis of Report Builder, 406
browser role added to, 226–228

report consumers

6-2250-7.book Page 540 Tuesday, March 21, 2006 3:45 PM

541

changing model objects, 212
changing perspective of, 217
creating, 200
data source for, 200–201
data source view in, 201–204
defined, 199
deleting objects, 215
deploying report model project, 224
expressions in, 222
formatting numeric values, 213
management tools for building, 207
managing, 223
modifying with Visual Studio, 211–212
organizing objects in, 215
overview of, 199
placing objects in folders, 216
publishing, 224
Quick Reference, 230
rearranging objects, 216
renaming objects, 212
Report Model wizard for creating, 205–207
reviewing, 207–211
securing, 226
sort direction, 214
source fields in, 220–221

report parameters, 161–177
accessing via Value or Label properties, 164
adding, 162
available values, querying, 174–175
cascading, 174
changing report data with, 161
conditional formatting, 165–166
dataset for values of, 173–174
default values in, 162–164
defining available values, 169–172
displaying parameter value in a textbox, 177
filtering dataset, 175–176
filters created from, 172–173
input parameter for stored procedures, 172
query parameters, 167–172
URLs for accessing reports, 503–505

report processing extensions, 15
Report Processor, 13
report producers, 75
Report Server. See Reporting Services
Report Server Project template, 76
Report Server Project Wizard, 38–40
report servers. See also Reporting Services

choosing components to install, 24
credentials for accessing databases, 21
database specification, 31
defined, 9
installing on Web server, 20
listing current report server settings, 495
.NET Framework and, 20

overview of, 13
publishing reports to, 408
starting ReportServer service, 21
verifying installation of, 34
Web.config file, 300

report snapshots
as scheduled reports, 14
defined, 14, 16
troubleshooting subscriptions, 402

report toolbar
features of, 334
HTML Viewer, 339–342

Report Viewer control
overview of, 517
using report parameters in, 518–524

Report Wizard
arranging data, 46–48
data source connection, 40–43
previewing reports, 51–54
query design, 43–44
report and project properties, 49–51
report type and, 45
style templates, 48–49
Welcome page, 39

Reporting Services, 233–269
access and delivery, 8, 16
ad hoc reporting, 4
authoring, 7, 11
cached instances, of reports, 259–261
central storage, 5
command-line utilities, 12
components, 8–16
customization with, 8
defining deployment properties by project, 234–235
deploying reports, 236–238
dynamic visibility, 182
embedded reporting, 4
enterprise reporting life cycle, 6
executing reports with current data, 257
external reporting, 4
internal reporting, 4
linking reports, 246–247
location of custom assemblies, 441
management stage, 7
management with, 13
managing report execution, 256–258
moving report content, 244–246
organizing report content, 242–243
overview, 3, 233
provider. See WMI (Windows Management

Instrumentation)
publishing reports, 233–234
Quick Reference, 269
report history, 266–268
republishing reports, 238

Reporting Services

6-2250-7.book Page 541 Tuesday, March 21, 2006 3:45 PM

542

rs utility, 240–242
scenarios, 3–4
scheduling reports, 261–263
scripts. See rs utility
security. See security management
snapshot management, 263–266
standard reporting, 4
standardization, 5
uploading reports to, 239–240
uploading resources to, 240
user communities, 5–6
Web Services. See Web Services
working with data sources, 250–251
working with report content properties, 250
working with report general properties, 248–249

Reporting Services Books Online, 376
Reporting Services Configuration tool, 11
ReportingServicesService.exe.config

DefaultTraceSwitch setting, 305
editing, 306
overview of, 300
routing traces to debug window, 306

ReportItems collection
adding report item to tables, 123–125
uses of, 122–123

ReportName global variable, 122
reports

advanced. See advanced reports
defined, 16
delivery, 32
displaying, 67
exporting, 69–71
history, 266–268
publishing, 57–58
Quick Reference, 72
searching, 68
subreports. See subreports
type, 45

reports, accessing
creating report history snapshot, 347–349
finding and viewing, 333–334
navigating folder hierarchy, 334–335
overview of, 67, 333
printing, 351
refreshing, 336–337
saving reports to local files, 349–351
searching for, 337–339
using HTML Viewer, 339–342
using My Reports, 342–346
using URLs, 500

reports, creating
arranging data, 46–48
data source selection, 40–43
layout issues, 55–57
previewing report, 51–54
properties, 49–51

query design, 43–44
Report Server Project Wizard, 38–40
report type selection, 45
steps in authoring reports, 37
style templates, 48–49

reports, custom applications for managing, 485–492
buttons for adding/removing content, 486–492
CreateReport() method, 485
deleting unneeded content, 486
operations available, 485
uploading reports, 485

ReportServer database, 494
administering, 324
backing up, 326
defining, 16
functions of, 324

ReportServer_<timestamp>.log, 305
ReportServerService_<timestamp>.log, 305
ReportServerService_main_<timestamp>.log, 305
ReportServerTempDB database

administering, 324
backing up, 326
defined, 16
functions of, 324

ReportServerWebApp_<timestamp>.log, 305
ReportsExecuted/Sec, 307
Requests/Sec, 307
resource items, uploading to reports, 240
RichTextBox, 512–515
role assignments, 272–277

Browser role, 273–276
Content Manager, 276–277
filtering data and, 285
list of roles, 272
system security, 280–284

role definitions, 271
role-based security, 271
roles

entity, 200
for navigating between entities, 409
in role-based security, 271
renaming, 212
system roles, 280

row groups, required in matrix reports, 413
rows

adding fields to table rows, 83, 86
aggregation functions for detail rows, 127
expressions for sorting detail rows, 134
hiding detail rows in tables, 183
inserting into tables, 118
row groups added to matrix data regions, 140–141
sorting in matrix data regions, 141–142
static rows added to matrix data regions, 146–147

rs class, 473
rs utility

defined, 12

Reporting Services Books Online

6-2250-7.book Page 542 Tuesday, March 21, 2006 3:45 PM

543

executing, 241
listing items in specified folder, 474–477
namespaces, 473
publishing reports with, 233, 241
querying Report Server contents, 474
repetitive tasks with, 473
rs class, 473
syntax, 473

rsconfig utility
changing encrypted configuration information,

302–304
defined, 12
encrypting credentials for unattended reports, 304
storing credentials with, 303
syntax for, 302

rskeymgmt utility, 12, 327
rsmgrpolicy.configr, 300
RSPreviewPolicy.config, 300
rsreportserver.config

changing unencrypted information in, 301
editing, 300–302
overview of, 300

RSReportServer.config file, 376
rssrvpolicy.config, 300
RSWebApplication config file, 376

S
saving reports

creating report history snapshot, 347–349
to local files, 349–351
overview of, 346–347
printing, 351

schedules
creating shared, 262
pausing shared, 324
report execution, 256, 261–263
snapshot, 264
subscriptions, 379, 401

Scheduling and Delivery Processor, 14
scope, of aggregation functions, 127, 174
scripts. See also rs utility

creating script file for report, 240
for monitoring performance, 308

Search feature
finding reports, 68, 333–334
using, 337–339

Section, URL access parameter syntax, 506
security

applying in management stage, 8
controlling access to reports, 524
customizing features, 511
displaying reports and, 501
report models, 226
Report Server database, 494
URLs for accessing reports, 500

security management, 271–297
browser role assignment, 273–276
Content Manager role assignment, 276–277
data security, 285–295
item security, 277–280
Quick Reference, 297
role assignments, 272–277
role-based security, 271
system security, 280–284

Semantic Model Definition Language (SMDL), 199, 223
series group, adding to charts, 150–152
server components, managing, 299–329

backup and restore strategy, 326–328
configuring, 299–300
database administration, 324–326
disabling shared data sources, 321–324
disk space requirements, 326
editing rsreportserver.config, 300–302
execution logs, 307–308
execution time-outs, 318–320
job cancellation, 320–321
overview, 299
pausing shared schedule, 324
performance counters, 307
quick reference, 329
source query time-outs, 317–318
trace logs, 305–306
working with encrypted information in configuration

files, 302–304
server extensions

authentication, 14
data processing, 15
defined, 14
delivery, 15
rendering, 15
report processing, 15

server layer, in Reporting Services architecture, 9
service accounts

adding, 22
selecting during installation of Reporting Services,

27–28
service packs, Reporting Services, 19
services, confirming running, 34
session management

executing reports with current data, 257
monitoring active sessions, 307

setup wizard
installing Reporting Services, 23–24
launching, 23

shared data sources
adding, 78
disabling, 321–324
moving, 244

shared schedules
creating, 262
pausing, 324

shared schedules

6-2250-7.book Page 543 Tuesday, March 21, 2006 3:45 PM

544

Simple Mail Transfer Protocol. See SMTP (Simple Mail
Transfer Protocol)

site configuration, for installation of Reporting Services,
18

SMDL (Semantic Model Definition Language), 199, 223
SMTP (Simple Mail Transfer Protocol)

configuring, 11
e-mail report delivery and, 33, 376

SMTP servers, 376
Snapshot, URL access parameter, 507
snapshots

creating report history, 347–349
managing, 263–266
saving with report history, 266–268
scheduling, 264

SOAP, 472
software requirements, installing Reporting Services, 20
Solution Explorer, 78
sort feature, My Subscriptions page, 400
sorts

expressions for, 133–135
interactive, 86
list, 157
months by numeric values, 143
rows in matrix data regions, 141–142
sort direction in report models, 214
table row, 86

source fields, report model
adding, 220–221
overview, 220

source query time-outs, 317–318
SQL queries

compared with MDX queries, 194
report models and, 200

SQL Server 2005, 20
SQL Server 2005 Integration Services (SSIS), 308
SQL Server Agent

processing schedules with, 14
user credentials and, 21

SQL Server Business Intelligence Development Studio
adding report model data source, 200
data security, 290

SQL Server Enterprise edition, 415
SQL Server Management Studio, 12, 207
SSIS (SQL Server 2005 Integration Services), 308
SSL configuration, installing Reporting Services, 21
Standard Edition, 18
standard reporting, 4
standard subscriptions

creating, 375–376
e-mail delivery, 376–383
file share delivery, 383–389

standards, 5
Static Groups, 146–147

static text
adding, 101
in tables, 84

storage, centralized, 5
stored credentials

configuring, 252
overview of, 251

stored procedures, 172
StreamIDs, 512
strings

adding to table cells, 85
concatenation of string values, 129

styles
font, 93, 95
Report Designer, 94–96
templates for creating reports, 48–49

subreports, 186–188
adding, 186
nesting in tables, 187–188
overview of, 186

subscription delivery table
browsing contents of, 389
creating data-driven subscription, 393

subscriptions
creating data-driven, 389–398
creating standard, 375–376
creating standard e-mail, 376–383
creating standard file share, 383–389
creating subscription delivery table, 389
deleting inactive, 403
disabling, 376
overview of, 375
Quick Reference, 403
troubleshooting, 402
using My Subscriptions page, 399–401

subtotals
computing group, 92–93
in matrix data regions, 144–146
in Report Builder, 410

Sum function
adding to group footer, 92
adding to report body, 129–130
aggregate functions, 92
as default aggregate function, 125
expressions, 85
Recursive keyword used with, 193

symmetric keys, 327
System Administrator role, 281
system roles

assigning, 271, 281
defaults, 281

system security, 280–284
system tasks, predefined, 271
System User role, 281

Simple Mail Transfer Protocol

6-2250-7.book Page 544 Tuesday, March 21, 2006 3:45 PM

545

T
table reports

building with Report Builder, 408–412
expressions added to, 426–428
formatting, 421–423

tables
adding fields to table rows, 83–86
adding floating headers, 98
adding groups to, 88
adding report items to, 123–125
adding to reports, 82
aggregate functions in, 127–129
Analysis Services data in, 197
compared with matrices, 142
compared with other data regions, 138
cumulative value in, 127
data regions in, 137–138
defined, 83
hiding detail rows, 183
inserting rows, 118
interactive sorts, 86
manipulating table structures with data source

view, 201
margin added to, 117
merging cells for centering table header, 128
nesting subreports in, 187–188
properties, 103
repeating in header, 103
sorting table rows, 86

TargetReportFolder property, 234
TargetServer URL property, 234
tasks

scripts for repetitive, 473
user tasks and system tasks, 271

templates
Report Server Project, 76
style templates, 48–49

testing, data processing extensions, 459–462
text

alignment in ad hoc reports, 421
in tables, 83

textboxes
aggregate functions in, 126, 129
filters in, 177
overview of, 100–102
report titles, 408
static text, 101

TIFF files, 355, 358–362
time-outs

adding to source queries, 317–318
DatabaseQueryTimeout property, 493

title, textbox for, 408
ToggleItem

toggling hidden state of items, 184
using, 183–186

Toolbar parameter, 506, 508
Toolbox, dragging items from, 83
Total Processing Failures, 307
Total Requests, 307
trace logs, 305–306

configuring, 305–306
DefaultTraceSwitch setting, 305
troubleshooting subscriptions, 402
types of, 305

Tree View
changing perspective of report models, 217
displaying information using, 478
Report Model Designer, 207–208

Trial Software, Reporting Services, 18
troubleshooting subscriptions, 402

U
<UnattendedExecutionAccount>, 301
unattended reports, 303
uniform resource locators. See URLs (uniform resource

locators)
Universal Naming Convention (UNC), 23
UNC (Universal Naming Convention), 23
Upload File feature, Report Manager, 239–240
uploading

reports to Report Server, 239–240
resources to Report Server, 240

URLs (uniform resource locators)
access parameters, 500, 505–510
Action, 178
locating Web service with, 471
overview of, 499
report access with, 500
TargetServerURL property, 234
viewing reports, 500–503
working with report parameters, 503–505

user accounts, 21–22
user authentication

adding identity impersonation to Web application,
516–517

overview of, 515
user communities, 5–6
user tasks, predefined, 271
@UserID query parameter, 289
users

configuring credentials, 251
creating credentials, 21–22
filtering report data, 293–295
restricting source query by user, 288–289
role assignments, 272

users

6-2250-7.book Page 545 Tuesday, March 21, 2006 3:45 PM

546

V
Value property, 164
values

adding to charts, 149–150
dataset for report parameter values, 173–174
defining values available for a report parameter,

169–172
displaying parameter value in a textbox, 177
passing multiple parameter, 524–527
query for available report parameter values, 174–175
in query parameters, 169
Render() method, 511
report parameters with default values, 162–164
specifying default values, 253–254

variables, global. See global variables
View Report, 166
viewing

rendering reports for online, 356
reports, 333–334
URLs for viewing reports, 500–503

views, URL, 510
virtual directories

configuring, 29
moving with Report Manager, 20
naming, 19

visibility
dynamic visibility, 182
Hidden property and, 183
hiding detail rows, 183
ToggleItem and, 183–186

Visual Basic, 433
Visual Basic.NET, 94
Visual Studio

integration of Report Designer with, 76
Model Designer, 200
modifying report models, 211–212
publishing reports with, 233

W
Warnings, 512
Web archive, exporting reports and, 356–358
Web farms

Enterprise Edition supporting, 18
tools for managing, 19

Web page, adding URLs to, 500
Web servers, installing Report Server and Report

Manager on, 20
Web Service Description Language. See WSDL (Web

Service Description Language)
Web services

coding applications to use Web service class
library, 472

custom applications for managing Reporting
Services, 477–478

functionality of, 472
options for accessing, 472
overview, 471, 510–511
proxy classes, 477
rendering reports, 511–515
Reporting Services using, 8
Report Manager compared with, 471
rs utility for creating proxy class for, 472

Web.config
DefaultTraceSwitch setting, 305
Report Manager and Report Server and, 300

WHERE clause
query parameters and, 161, 167, 289
report filters and, 423

WHILE loops, 433
window, Report Builder, 407
Windows Management Instrumentation (WMI). See

WMI (Windows Management Instrumentation)
Windows operating system, installing Reporting

Services on, 19
WMI (Windows Management Instrumentation),

493–496
classes, 492
listing current report server settings, 495–496
querying a report server, 493–494
using classes in custom applications, 494

Workgroup Edition, 18
WSDL (Web Service Description Language)

rs utility locating WSDL document, 473
URL specifying location of WSDL document, 477
XML basis of, 471

X
XML

data processing extensions, 446, 462
DOM (Document Object Model), 466
method for opening XML connection, 465
SOAP and, 472
WSDL and, 471

XML files
data source view, 201
rendering report as, 373–374
sharing data formatted as, 355

XML schema, 75
XMLCommand class, 450
XMLConnection class, 449
XMLDataReader class, 452
XmlTextWriter class, 466

Z
Zoom, URL access parameter syntax, 506

Value property

6-2250-7.book Page 546 Tuesday, March 21, 2006 3:45 PM

About the Authors
Stacia Misner manages Hitachi Consulting’s education services practice, specializes in devel-
oping training and solutions for business intelligence (BI) and enterprise reporting, and deliv-
ers BI training world-wide. She has more than 20 years’ experience as an IT consultant and
educator, with experience in project management, life-cycle data warehouse design and devel-
opment, and software development life-cycle management. Stacia is the author of both
Microsoft SQL Server 2000 Reporting Services Step by Step, and Microsoft SQL Server 2005
Reporting Services Step by Step, and coauthor of Business Intelligence: Making Better Decisions
Faster. She lives in Las Vegas, NV, with her husband, Gerry, and their seven parrots.

As Hitachi, Ltd.’s (NYSE: HIT) global consulting company, Hitachi Consulting is a recognized
leader in delivering proven business and IT solutions to Global 2000 companies across many
industries. We leverage decades of business process, vertical industry, and leading-edge tech-
nology experience to understand each company’s unique business needs. From business strat-
egy development through application deployment, our consultants are committed to helping
clients quickly realize measurable business value and achieve sustainable return on invest-
ment. Hitachi Consulting is also a Microsoft Certified Gold Partner for Business Intelligence,
an exclusive provider of curriculum and instructors for Microsoft’s SQL Server 2005 Business
Intelligence Ascend training program, and an experienced systems integrator with successful
SQL Server 2005 BI implementations at companies participating in Microsoft’s Technology
Adoption Program (TAP). We offer a client-focused, collaborative approach and transfer knowl-
edge throughout each engagement. For more information, visit www.hitachiconsulting.com.
Hitachi Consulting – Inspiring your next success®.

Contributing Authors
Aaron Solomon, a Business Intelligence Architect at Hitachi Consulting, has been developing
BI solutions for over six years. He has taught SQL Server 2000 and 2005 BI courses through-
out the United States, and teaches courses for the University of Washington’s Certificate Pro-
gram in Database Management. He has engaged with a wide range of client business groups
including accounting, mergers and acquisitions, data warehousing, IT, tax, and legal, and has
worked on numerous projects that involved performing complex analysis on large data sets.
He has a B.A. in Economics from the University of Washington. Aaron lives in the Seattle, WA,
metro area with his wife, Darla, and their cats, Omar and Henry.

In addition, this book includes the contributions of many others who participated in the
development or review of Hitachi Consulting’s Reporting Services courseware: Elizabeth Vitt,
Scot Reagin, David DuVarney, Steve Muise, Mark Dreessen, Shetu Yama, Pete Jevtic, and Susan
O’Connell.

6-2250-7.book Page 1 Tuesday, March 21, 2006 3:45 PM

6-2250-7.book Page 2 Tuesday, March 21, 2006 3:45 PM

	Cover
	Copyright

	Introduction
	Finding Your Best Starting Point
	About the Companion CD-ROM
	System Requirements
	Installing and Using the Sample Files
	Conventions and Features in This Book

	Part I Getting Started with Reporting Services
	Chapter 1 Understanding Reporting
	Reporting Scenarios
	Reporting User Communities
	The Enterprise Reporting Life Cycle
	Authoring
	Management
	Access and Delivery

	Reporting Services Components
	Authoring Components
	Management Components
	Access and Delivery Components

	Chapter 1 Quick Reference

	Chapter 2 Installing Reporting Services
	Considering Deployment Options
	Choosing a Reporting Services Edition
	Planning a Site Configuration
	Deciding Naming Conventions

	Preparing for Installation
	Reviewing Operating System Requirements
	Reviewing Software Requirements
	Reviewing Configuration Prerequisites
	Creating Reporting Services Credentials

	Installing Reporting Services
	Launching Setup
	Choosing the Components
	Selecting the Service Account
	Using the Reporting Services Configuration Manager
	Configuring Virtual Directories
	Specifying the Report Server Database
	Specifying Report Delivery Options
	Verifying the Installation

	Chapter 2 Quick Reference

	Chapter 3 Building Your First Report
	Authoring a Report
	Starting a New Report
	Connecting to a Data Source
	Getting Data for the Report
	Structuring Data in the Report
	Placing Data in the Report Structure
	Applying a Style Template
	Finishing the Report Wizard
	Checking the Report Layout
	Correcting Report Layout Issues
	Publishing a Report

	Managing a Report
	Reviewing Report Properties
	Changing Report Properties
	Reviewing Execution Properties
	Changing Data Sources Properties
	Changing Execution Properties

	Accessing a Report
	Displaying a Report
	Searching a Report
	Exporting a Report

	Chapter 3 Quick Reference

	Part II Authoring Reports
	Chapter 4 Developing Basic Reports
	Understanding a Report Definition File
	Preparing a Report Using Report Designer
	Creating a New Report Project
	Creating a New Report
	Connecting to a Data Source
	Working with Datasets

	Structuring a Report Using Report Designer
	Adding Items from the Toolbox
	Working with Table Rows
	Sorting Table Rows
	Grouping Data in a Table
	Adding Group Headers
	Computing Group Subtotals

	Formatting a Report Using Report Designer
	Setting the Format Property
	Applying Styles
	Editing Properties
	Adding Floating Headers
	Triggering Page Breaks
	Adding a Textbox
	Setting Table Properties
	Working with Page Headers
	Working with Page Footers
	Adding Graphical Elements
	Adding Images

	Chapter 4 Quick Reference

	Chapter 5 Working with Expressions
	Using Expressions to Calculate Values
	Creating Calculated Fields
	Using Global Variables
	Using the ReportItems Collection

	Using Aggregate Functions
	Using Aggregate Functions in a Table
	Using Aggregate Functions in a Textbox

	Using Expressions to Change an Object’s Behavior
	Using Conditional Formatting
	Sorting

	Chapter 5 Quick Reference

	Chapter 6 Organizing Data in Reports
	Understanding Data Regions
	Comparing Types of Data Regions
	Using Data Regions

	Using a Matrix
	Adding a Matrix Data Region
	Grouping Rows
	Sorting Rows
	Grouping Columns
	Using Subtotals in a Matrix
	Using Static Rows and Columns in a Matrix

	Using a Chart
	Adding a Chart
	Adding Values and Column Groups to a Chart
	Grouping Data by Series
	Adding a Chart Legend
	Setting Chart Properties

	Using a List
	Adding a List
	Grouping and Sorting a List
	Using Fields in a List
	Nesting Data Regions

	Chapter 6 Quick Reference

	Chapter 7 Building Advanced Reports
	Using Parameters to Change Report Data
	Adding a Report Parameter
	Using the Parameters Collection
	Adding a Query Parameter
	Supplying Values for a Query Parameter
	Creating a Report Parameter for a Filter
	Adding a Filter
	Adding a Parameter Value to a Report

	Linking Information with Interactive Features
	Adding Actions
	Using the Hidden Property
	Using the ToggleItem Property
	Adding a Subreport

	Working with Hierarchical Data
	Displaying a Recursive Hierarchy in a Data Region
	Using the Level Function
	Using the Recursive Keyword
	Creating an Analysis Services Data Source and Dataset
	Using an Analysis Services Dataset

	Chapter 7 Quick Reference

	Chapter 8 Building Report Models
	Understanding Report Models
	Creating a Report Model
	Adding a Report Model Data Source
	Adding a Data Source View
	Adding a Report Model
	Reviewing a Report Model

	Modifying a Report Model
	Changing Model Objects
	Organizing Model Objects
	Adding Source Fields
	Adding Expressions

	Managing a Report Model
	Publishing a Report Model
	Securing a Report Model

	Chapter 8 Quick Reference

	Part III Managing the Report Server
	Chapter 9 Managing Content
	Publishing Reports
	Defining Deployment Properties by Project
	Deploying Reports
	Uploading Reports
	Creating a Script File
	Using the rs Utility

	Organizing Content
	Working with Folders
	Moving Content
	Linking Reports
	Working with General Properties

	Using Properties to Manage Report Content
	Working with Data Sources
	Specifying a Default Value
	Disabling a Parameter Prompt

	Managing Report Execution
	Executing Reports with Current Data
	Implementing Cached Instances
	Working with Shared Schedules
	Managing Snapshots
	Using Report History

	Chapter 9 Quick Reference

	Chapter 10 Managing Security
	Using Report Server Security
	Adding Role Assignments
	Applying Item Security
	Applying System Security

	Applying Data Security
	Using Roles and Parameters to Restrict Data
	Restricting the Source Query by User
	Filtering the Report Data by User

	Chapter 10 Quick Reference

	Chapter 11 Managing Server Components
	Configuring Reporting Services
	Editing the rsreportserver.config File
	Changing Encrypted Configuration Information Using the rsconfig Utility
	Configuring Tracing on the Report Server

	Managing the Report Server
	How to Monitor Performance
	Managing Execution Logging
	Initializing an Execution Log Database
	Using an Execution Log Report
	Adding Current Data to the Execution Log
	Applying Time-outs to Source Queries
	Applying Time-outs to Report Execution
	Canceling Jobs
	Disabling a Shared Data Source

	Administering Reporting Services Databases
	Monitoring Database Storage Consumption
	Implementing a Backup and Restore Strategy

	Chapter 11 Quick Reference

	Part IV Delivering Reports
	Chapter 12 Accessing Reports
	Finding and Viewing Reports
	Navigating the Folder Hierarchy
	Refreshing Reports
	Searching for Reports
	Using the HTML Viewer
	Using My Reports

	Saving Reports for Future Reference
	Creating a Report History Snapshot
	Saving Reports to Local Files
	Printing Reports

	Chapter 12 Quick Reference

	Chapter 13 Rendering Reports
	Comparing Rendering Formats
	Rendering for Online Viewing
	Rendering as MHTML

	Rendering for Document Management
	Rendering as a TIFF File
	Rendering as a PDF File

	Rendering for Data Exchange
	Rendering as an Excel File
	Rendering a Report as a CSV File
	Rendering a Report as an XML File

	Chapter 13 Quick Reference

	Chapter 14 Managing Subscriptions
	Creating a Standard Subscription
	Delivering a Report by E-Mail
	Delivering a Report to a File Share

	Creating a Data-Driven Subscription
	Creating a Subscription Delivery Table
	Creating a Data-Driven Subscription

	Managing Subscriptions
	Using the My Subscriptions Page
	Deleting Subscriptions

	Chapter 14 Quick Reference

	Chapter 15 Creating Reports with Report Builder
	Building Basic Reports
	Getting Started with Report Builder
	Building a Report
	Building a Matrix Report
	Using Clickthrough
	Building a Chart Report

	Enhancing Reports
	Formatting a Report
	Filtering a Report
	Adding Expressions

	Chapter 15 Quick Reference

	Part V Programming Reporting Services
	Chapter 16 Report Authoring with Custom Development
	Using Custom Code
	Adding Custom Code to a Report
	Accessing Functions Using the Code Global Member
	Creating a Custom Class Library
	Using Functions from a Custom Assembly

	Creating Custom Data Processing Extensions
	Assigning a Namespace
	Creating a Connection Object
	Creating a Command Object
	Creating a Data Reader Object
	Deploying a Custom Data Processing Extension

	Generating Report Definition Language
	Creating a Console Application
	Adding a Data Source Connection
	Generating a Fields List
	Generating the RDL

	Chapter 16 Quick Reference

	Chapter 17 Programming Report Server Management
	Understanding Web Services
	Using the rs Utility
	Querying Report Server

	Using a Custom Application to Manage Reporting Services
	Querying Report Server
	Managing Reports

	Using the Reporting Services WMI Provider
	Querying a Report Server

	Chapter 17 Quick Reference

	Chapter 18 Building Custom Reporting Tools
	Using URLs
	How to Use URLs to Access Reports
	Viewing Reports
	Working with Report Parameters
	Using URL Access Parameters

	Using the Web Service
	Rendering a Report
	Authenticating Users
	Using Report Parameters in a Control
	Enabling Multiselect for Parameters

	Chapter 18 Quick Reference

	Glossary
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	About the Authors
	Contributing Authors

